无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 643-650.DOI: 10.15541/jim20210521 CSTR: 32189.14.10.15541/jim20210521
洪督1,2(), 牛亚然1, 李红2, 钟鑫1, 郑学斌1(
)
收稿日期:
2021-08-23
修回日期:
2021-11-14
出版日期:
2022-06-20
网络出版日期:
2021-12-24
通讯作者:
郑学斌, 研究员. E-mail: xbzheng@mail.sic.ac.cn作者简介:
洪 督(1992-), 男, 硕士研究生. E-mail: hongdu@mail.sic.ac.cn
基金资助:
HONG Du1,2(), NIU Yaran1, LI Hong2, ZHONG Xin1, ZHENG Xuebin1(
)
Received:
2021-08-23
Revised:
2021-11-14
Published:
2022-06-20
Online:
2021-12-24
Contact:
ZHENG Xuebin, professor. E-mail: xbzheng@mail.sic.ac.cnAbout author:
HONG Du (1992–), male, Master candidate. E-mail: hongdu@mail.sic.ac.cn
摘要:
等离子喷涂TiC涂层具有良好的综合性能, 在极端环境能起到较好的耐磨保护作用, 而石墨是一种优异的自润滑材料。通过喷雾干燥与真空烧结技术制备不同石墨添加量(1.25%、2.5%、5%和10%, 质量分数)的TiC-Graphite球形粉体, 并采用大气等离子喷涂技术制备TiC-Graphite复合涂层。对涂层的相组成、显微结构和力学性能进行了表征, 并对涂层的摩擦磨损性能进行了比较研究。结果发现, TiC-Graphite涂层主要由TiC和石墨相组成。随石墨添加量增大, TiC-Graphite涂层截面微裂纹增多, 表面粗糙度增大, 硬度下降。石墨对TiC涂层在高载荷的磨损性能影响更显著。在50 N高载荷条件, 随石墨添加量增大, TiC-Graphite涂层磨损率降低后急剧增大, 而摩擦系数持续减小。当石墨添加量为2.5%时, 涂层获得最低的磨损率为0.67×10-5 mm3/(N·m), 同时具有较低的摩擦系数(0.35), 与不添加石墨的TiC涂层相比, 分别降低了72.4%和27.8%。
中图分类号:
洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650.
HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings[J]. Journal of Inorganic Materials, 2022, 37(6): 643-650.
Parameter | Si | TiC-Graphite |
---|---|---|
Powder/kW | 30-40 | 35-45 |
Primary gas Ar/(L·min-1) | 34-40 | 36-42 |
Secondary gas H2/(L·min-1) | 5-10 | 7-12 |
Powder feed speed/(r·min-1) | 15-20 | 13-18 |
Spray distance/mm | 100-130 | 100-130 |
表1 Si和TiC-Graphite涂层大气等离子喷涂工艺参数
Table 1 Atmospheric plasma spray parameters for Si and TiC-Graphite coatings
Parameter | Si | TiC-Graphite |
---|---|---|
Powder/kW | 30-40 | 35-45 |
Primary gas Ar/(L·min-1) | 34-40 | 36-42 |
Secondary gas H2/(L·min-1) | 5-10 | 7-12 |
Powder feed speed/(r·min-1) | 15-20 | 13-18 |
Spray distance/mm | 100-130 | 100-130 |
图1 TG2.5粉体的低倍形貌(a)、高倍形貌(b)、粒径分布(c)和相关EDS分析(d)
Fig. 1 Low (a) and high (b) magnification morphologies, particle size distribution (c) and EDS analysis (d) of TG2.5 powder
图4 TiC-Graphite涂层的截面形貌(a~e), TG2.5涂层截面氧元素面分布(f)和不同区域EDS分析(g~i)
Fig. 4 Cross-sectional morphologies of TiC-Graphite coatings (a-e), oxygen element mapping (f) of cross section of TG2.5 coating and EDS analyses (g-i) of different areas among (d) and (e)
图6 20 N(a)和50 N(b)载荷条件TiC-Graphite涂层的摩擦系数随时间的变化曲线
Fig. 6 Change of friction coefficients of the TiC-Graphite coatings with time under 20 N (a) and 50 N (b)
图7 20(a)和50 N(b)载荷条件TiC-Graphite涂层的摩擦系数和磨损率随石墨添加量的变化
Fig. 7 Change of friction coefficients and wear rates of the TiC-Graphite coatings with graphite amount under 20 N (a) and 50 N (b)
图8 TiC-Graphite涂层的磨痕形貌(a~e, g, h), TG2.5涂层磨痕的氧元素面分布(f)和TiC-Graphite涂层磨痕表面相关元素含量(i)
Fig. 8 Morphologies of the wear tracks of TiC-Graphite coatings (a-e, g, h), oxygen element mapping (f) of the wear tracks of TG2.5 coating and elements content of the wear tracks of TiC-Graphite coatings (i)
[1] |
ZHU H Y, NIU Y R, LIN C C, et al. Microstructures and tribological properties of vacuum plasma sprayed B4C-Ni composite coatings. Ceramics International, 2013, 39(1): 101-110.
DOI URL |
[2] |
WANG Y W, NIU Y R, ZHONG X, et al. Water vapor corrosion behaviors of plasma sprayed RE2SiO5 (RE = Gd, Y, Er) coatings. Corrosion Science, 2020, 167: 108529.
DOI URL |
[3] |
WANG Y W, NIU Y R, ZHONG X, et al. Water vapor corrosion behaviors of plasma sprayed ytterbium silicate coatings. Ceramics International, 2020, 46(18): 28237-28243.
DOI URL |
[4] |
PAN X H, LI C, NIU Y R, et al. Effect of tungsten-containing additives (WB/WSi2/W) on ablation behavior of ZrB2-SiC coating. Corrosion Science, 2020, 168: 108560.
DOI URL |
[5] |
XU X T, PAN X H, NIU Y R, et al. Difference evaluation on ablation behaviors of ZrC-based and ZrB2-based UHTCs coatings. Corrosion Science, 2021, 180: 109181.
DOI URL |
[6] |
GUO X Q, NIU Y R, HUANG L P, et al. Microstructure and tribological property of TiC-Mo composite coating prepared by vacuum plasma spraying. Journal of Thermal Spray Technology, 2012, 21(5): 1083-1090.
DOI URL |
[7] |
KUPTSOV K A., SHEVEYKO A N, MANAKOVA O S, et al. Comparative investigation of single-layer and multilayer Nb-doped TiC coatings deposited by pulsed vacuum deposition techniques. Surface and Coatings Technology, 2020, 385: 125422.
DOI URL |
[8] |
LUO J, OU Y X, ZHANG Z Q, et al. Low friction coefficient of superhard nc-TiC/a-C:H nanocomposite coatings deposited by filtered cathodic vacuum arc. Materials Research Express, 2019, 6(9): 096418.
DOI URL |
[9] |
CHITSAZ-KHOYI L, KHALIL-ALLAFI J, MOTALLEBZADEH A, et al. The effect of hydroxyapatite nanoparticles on electrochemical and mechanical performance of TiC/N coating fabricated by plasma electrolytic saturation method. Surface and Coatings Technology, 2020, 394: 125817.
DOI URL |
[10] |
SOUČEK P, DANIEL J, HNILICA J, et al. Superhard nanocomposite nc-TiC/a-C:H coatings: the effect of HiPIMS on coating microstructure and mechanical properties. Surface and Coatings Technology, 2017, 311: 257-267.
DOI URL |
[11] | FOUTS J A, SHILLER P J, MISTRY K K, et al. Additive effects on the tribological performance of WC/a-C:H and TiC/a-C:H coatings in boundary lubrication. Wear, 2017, 372-373: 104-115. |
[12] |
OLAH N, FOGARASSY Z, SULYOK A, et al. Ceramic TiC/a:C protective nanocomposite coatings: structure and composition versus mechanical properties and tribology. Ceramics International, 2016, 42(10): 12215-12220.
DOI URL |
[13] |
HONG D, NIU Y R, LI H, et al. Comparative study on wear behavior of plasma-sprayed TiC coating sliding against different counterparts. Journal of Thermal Spray Technology, 2020, 29(5): 1082-1092.
DOI URL |
[14] | MI P B, HE J N, ZHAO H J, et al. Effect of graphite addition on structure and properties of Ti(CN) coatings deposited by reactive plasma spraying. Journal of Thermal Spray Technology, 2016, 25(8): 1588-1595. |
[15] |
HONG D, NIU Y R, LI H, et al. Comparison of microstructure and tribological properties of plasma-sprayed TiN, TiC and TiB2 coatings. Surface and Coatings Technology, 2019, 374: 181-188.
DOI URL |
[16] |
LI H Q, XIE Y T, LI K, et al. Microstructure and wear behavior of graphene nanosheets-reinforced zirconia coating. Ceramics International, 2014, 40(8): 12821-12829.
DOI URL |
[17] | 李虹庆. 石墨烯增强陶瓷基复合涂层的摩擦学行为及细胞相容性研究. 上海: 中国科学院上海硅酸盐研究所硕士学位论文, 2014. |
[18] | 肖明颖. 耐磨自润滑涂层的组织和性能研究. 青岛: 中国石油大学硕士学位论文, 2007. |
[19] |
NATARAJAN S, ANAND E E, AKHILESH K S, et al. Effect of graphite addition on the microstructure, hardness and abrasive wear behavior of plasma sprayed NiCrBSi coatings. Materials Chemistry and Physics, 2016, 175: 100-106.
DOI URL |
[20] |
HE J N, ZHANG F Y, MI P B, et al. Microstructure and wear behavior of nano C-rich TiCN coatings fabricated by reactive plasma spraying with Ti-graphite powders. Surface and Coatings Technology, 2016, 305: 215-222.
DOI URL |
[21] |
CAI B, TAN Y F, TU Y Q, et al. Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2426-2432.
DOI URL |
[22] |
ZHAO X Q, LI S J, HOU G L, et al. Influence of doping graphite on microstructure and tribological properties of plasma sprayed 3Al2O3-2SiO2 coating. Tribology International, 2016, 101: 168-177.
DOI URL |
[23] | MUSSA A, KRAKHMALEV P, BERGSTROM J, et al. Sliding wear and fatigue cracking damage mechanisms in reciprocal and unidirectional sliding of high-strength steels in dry contact. Wear, 2020, 444-445: 203119. |
[24] | ZHANG R J, ZHENG C L, CHEN C, et al. Study on fatigue wear competition mechanism and microstructure evolution on the surface of a bainitic steel rail. Wear, 2021, 482-483: 203978. |
[25] |
WOLLMANN T, NITSCHKE S, KLAUKE T, et al. Investigating the friction, wear and damage behaviour of plain bearing bushes of the variable stator vane system. Tribology International, 2022, 165: 107280.
DOI URL |
[26] |
JI C C, GUO Q Q, LI J P, et al. Microstructure and properties of CrN coating via multi-arc ion plating on the valve seat material surface. Journal of Alloys and Compounds, 2021, 891: 161966
DOI URL |
[27] |
TAVARES A F, LOPES A P O, MESQUITA E A, et al. Effect of transfer layers on friction and wear mechanisms in strip drawing tests of commercially coated forming tools. Wear, 2021, 476: 203733.
DOI URL |
[28] |
FABBRO S, ARAUJO L M, ENGEL J, et al. Abrasive and adhesive wear behaviour of metallic bonds in a synthetic slurry test for wear prediction in reinforced concrete. Wear, 2021, 476: 203690.
DOI URL |
[29] |
CAO J, HUANG H B, LI S X, et al. Tribological and mechanical behaviors of engine bearing with CuSn10 layer and h-BN/ graphite coating prepared by spraying under different temperatures. Tribology International, 2020, 152: 106445.
DOI URL |
[30] |
WAHLISCH F, HOTH J, HELD C, et al. Friction and atomic-layer-scale wear of graphitic lubricants on SiC(0001) in dry sliding. Wear, 2013, 300(1/2): 78-81.
DOI URL |
[1] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[2] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[3] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[4] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[5] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[6] | 李捷, 罗志新, 崔阳, 张广珩, 孙鲁超, 王京阳. 大气等离子喷涂Y3Al5O12/Al2O3陶瓷涂层的CMAS腐蚀抗力[J]. 无机材料学报, 2024, 39(6): 671-680. |
[7] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[8] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[9] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[10] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[11] | 倪晓诗, 林子扬, 秦沐严, 叶松, 王德平. 硅烷化介孔硼硅酸盐生物玻璃微球对PMMA骨水泥生物活性和力学性能的影响[J]. 无机材料学报, 2023, 38(8): 971-977. |
[12] | 付师, 杨增朝, 李江涛. 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38(10): 1117-1132. |
[13] | 吴东江, 赵紫渊, 于学鑫, 马广义, 由竹琳, 任冠辉, 牛方勇. Al2O3-TiCp复相陶瓷激光定向能量沉积直接增材制造[J]. 无机材料学报, 2023, 38(10): 1183-1192. |
[14] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[15] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||