|   [1]Poizot P, Laruelle S, Grugeon S, et al. Nano-sizedtransitionmetaloxidesas negative-electrode materials for lithiumion batteries. Nature, 2000, 407: 496-499. 
[2]Pereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu3N with lithium a complex system with parallel processes. J. Electrochem. Soc., 2003, 150(9): A1273-1286. 
[3]Pereira N, Klein L C, Amatucci G G, et al. The electrochemistry of Zn3N2 and LiZnN a lithium reaction mechanism for metal nitride electrodes. J. Electrochem. Soc., 2002, 149(3): A262-A271. 
[4]王 颖, 刘文元, 傅正文, 等(WANG Ying, et al). Mn4N薄膜与锂的电化学反应性能.物理化学学报(Acta Phys.-Chim. Sin.), 2006, 22(1): 65-70. 
[5]Débart A, Dupont L, Patrice R, et al. Reactivity of transition metal (Co, Ni, Cu) sulphides vs lithium: the intriguing case of the copper sulphide. Solid State Sci., 2006, 8(6): 640-651. 
[6]Souza D C S, Pralong V, Jacobson A J, et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science, 2002, 296(5575): 2012-2015. 
[7]Bichat M P, Politova T, Pascal J L, et al. Electrochemical reactivity of Cu3P with lithium. J. Electrochem. Soc., 2004, 151(2): A2074-A2081. 
[8]Silva D C C, Crosnier O, Ouvrard G., et al. Reversible lithium uptake by FeP2. Electrochem. SolidState Lett., 2003, 6(8): A162-A165. 
[9]Gillot F, Boyanov S, Dupont L, et al. On the reactivity of Li8-yMnyP4 toward lithium. Chem. Mater., 2005, 17(25): 3627-3635. 
[10]Wang K, Yang J, Xie J Y, et al. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem. Commun., 2003, 5(6): 480-483. 
[11]薛明喆, 傅正文(XUE Ming-Zhe, et al). 脉冲激光沉积法制备FeSe薄膜电极及其电化学性质. 化学学报(Acta Chim. Sinica), 2007, 65(23): 2715-2719. 
[12]Xue M Z, Fu Z W. Lithium electrochemistry of NiSe2: a new kind of storage energy material. Electrochem. Commun., 2006, 8(12): 1855-1862. 
[13]Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. (Weinheim, Ger.), 2003, 15(19): 736-739. 
[14]Li H, Balaya P, Maier J. Listorage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc., 2004, 151(11): A1878-A1885. 
[15]Badway F, Pereira N, Cosandey F, et al. Carbon metal fluoride nanocomposites high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc., 2003, 150(10): A1318-A1327. 
[16]Badway F, Pereira N, Cosandey F, et al. Carbon-metal fluoride nanocomposites structure and electrochemistry of FeF3∶C. J. Electrochem. Soc., 2003, 150(9): A1209-A1218. 
[17]Plitz I, Badway F, AlSharab J, et al. Structure and electrochemistry of carbonmetal fluoride nanocomposites fabricated by solid-state redox conversion reaction. J. Electrochem. Soc., 2005, 152(2): A307-A315. 
[18]Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices.Chem. Mater., 2007, 19(17): 4129-4141. 
[19]Makimura Y, Rougier A, Laffont L, et al. Electrochemical behaviour of low temperature grown iron fluoride thin films. Electrochem. Commun., 2006, 8(11): 1769-1774. 
[20]Makimura Y, Rougier A, Tarascon J M. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries. Appl. Suf. Sci., 2006, 252(13): 4587-4592. 
[21]张 华, 周永宁, 吴晓京, 等(ZHANG Hua, et al). 脉冲激光沉积CuF2薄膜的电化学性能. 物理化学学报(Acta Phys.-Chim. Sin.), 2008, 24(07): 1287-1291. 
[22]Zhang H, Zhou Y N, Sun Q, et al. Nanostructured nickel fluoride thin film as a new Li storage material. Solid State Sci., 2008, 10(9): 1166-1172. 
[23]Fu Z W, Li C L, Liu W Y, et al. Electrochemical reaction of lithium with cobalt fluoride thin film electrode. J. Electrochem. Soc., 2005, 152(2): E50-E55. 
[24]Zhou Y N, Zhang H, Xue M Z, et al. The electrochemistry of nanostructured In2O3 with lithium. J. Power Sources, 2006, 162(2): 1373-1378. 
[25]Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc., 2002, 149(5): A627-A634.
   |