无机材料学报

• 研究论文 •    

低温快速制备具有雷达/红外双模传输特性的莫来石陶瓷

崔楷敏, 李端, 曾雷, 彭江山, 王衍飞, 刘荣军   

  1. 国防科技大学空天科学学院 新型陶瓷纤维及其复合材料重点实验室,长沙 410073
  • 收稿日期:2025-12-10 修回日期:2026-01-08
  • 通讯作者: 李 端, 副研究员. E-mail: duan_li_2016@163.com
  • 作者简介:崔楷敏(2000-), 女, 硕士研究生. E-mail: 1850712227@qq.com
  • 基金资助:
    重点实验室基金(6142907240101); 国家自然科学基金(52172078); 湖南省科技创新计划(2023RC3024)

Rapid Low-Temperature Fabrication of Mullite Ceramics with Dual-Mode Radar/Infrared Transmission Characteristics

CUI Kaimin, LI Duan, ZENG Lei, PENG Jiangshan, WANG Yanfei, LIU Rongjun   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2025-12-10 Revised:2026-01-08
  • Contact: LI Duan, associate professor. E-mail: duan_li_2016@163.com
  • About author:CUI Kaimin (2000-), female, Master candidate. E-mail: 1850712227@qq.com
  • Supported by:
    Key Laboratory Fund (6142907240101); National Natural Science Foundation of China (52172078); Hunan Province Science and Technology Innovation Program (2023RC3024)

摘要: 随着高速飞行器技术的快速发展,对极端环境下兼具雷达透波与红外传输功能的材料提出迫切需求。莫来石陶瓷因具有优异的高温力学性能、介电性能及一定的红外透明性,成为理想候选材料之一。然而,莫来石陶瓷的传统制备方法温度高、工艺复杂,限制了其实际应用。本研究开发了一种低成本、短周期的莫来石陶瓷低温制备方法,选用高活性廉价多孔原料,采用放电等离子烧结(SPS)技术,利用介孔结构坍塌释放高活性表面与SPS场效应的协同作用,在1200 ℃下实现莫来石陶瓷的一步快速烧结制备,显著降低烧结温度和缩短制备周期。深入研究了烧结工艺参数对陶瓷的微结构、力学性能、介电性能以及红外传输性能的影响。1200 ℃、70 MPa、升温速率100 ℃·min-1条件下制备陶瓷密度可达3.06 gcm-3,孔隙率低至1.6%;弯曲强度达152.9 MPa,弯曲模量达87.1 GPa。较高的机械压力促使莫来石晶粒由针状向短柱状转变,断裂模式由沿晶断裂过渡为穿晶断裂,从而获得优异的力学性能;在8~16 GHz波段的平均介电常数为6.77且呈现出良好的稳定性,损耗角正切值为4.7×10-4,透波率高于70%,这得益于陶瓷烧结后的残余气孔显著降低了介质极化。同时,近红外波段透过率达45.11%,在雷达/红外双模透波材料领域展现出良好的应用前景。

关键词: 莫来石陶瓷, 放电等离子烧结, 低温制备, 介电性能, 红外透过率

Abstract: Rapid development of high-speed aircraft technology poses an urgent demand for materials capable of integrating radar wave transmission and infrared transmission under extreme environments. Mullite ceramics have emerged as a promising candidate materials due to their excellent high-temperature mechanical properties, dielectric properties, and inherent infrared transparency. However, the traditional preparation methods of mullite ceramics typically require high sintering temperature and involve complex processes, which limit their practical applications. In this work, one-step rapid sintering of mullite ceramics at 1200 ℃ was successfully achieved by utilizing highly active, low-cost porous raw materials and spark plasma sintering (SPS) technology, significantly reducing the sintering temperature and shortening the preparation cycle. This process relies on the synergistic effect between the high-active surfaces released by mesoporous structure collapse and the SPS field effect, thereby developing a low-cost, short-cycle, and low-temperature preparation process. The effects of sintering process parameters on the microstructure, mechanical properties, dielectric properties, and infrared transmission properties of the ceramics were investigated in depth. Under the conditions of 1200 ℃, 70 MPa and a heating rate of 100 ℃·min-1, the prepared ceramics exhibit a density of up to 3.06 g·cm-3 and a porosity as low as 1.6%; the flexural strength reaches 152.9 MPa and the flexural modulus is 87.1 GPa. The high mechanical pressure promotes the transformation of mullite grains from acicular to short columnar, and the fracture mode transitions from intergranular to transgranular, endowing the ceramics with excellent mechanical properties. In the 8-16 GHz band, the average dielectric constant is 6.77 with good stability, the dielectric loss tangent (tanδ) is 4.7×10-4, and the wave transmittance exceeds 70%, which is attributed to the significant reduction in dielectric polarization caused by the residual pores in the sintered ceramics. Meanwhile, the transmittance in the near-infrared (NIR) band reaches 45.11%, demonstrating promising application prospects in the field of radar/infrared dual-mode wave-transparent materials.

Key words: mullite ceramics, spark plasma sintering, low-temperature preparation, dielectric properties, infrared transmittance

中图分类号: