无机材料学报

• •    

氧化铝基定向凝固共晶陶瓷的组织特性、调控方法及环境稳定性

周翠1, 李捷2, 孙鲁超2, 苏海军3, 王京阳2   

  1. 1.辽宁材料实验室 燃氢防护技术研究所, 沈阳 110016;
    2.中国科学院 金属研究所, 沈阳 110016;
    3.西北工业大学 全国凝固技术国家重点实验室, 西安 710072
  • 收稿日期:2025-10-31 修回日期:2025-12-26
  • 通讯作者: 孙鲁超, 研究员. E-mail: lcsun@imr.ac.cn; 苏海军, 教授, E-mail: shjnpu@nwpu.edu.cn
  • 作者简介:周 翠(1997-), 女, 博士. E-mail: zhouc@lam.ln.cn
  • 基金资助:
    国家自然科学基金(52130204, U21A2063); 国家重点研发计划(2024YFB3714503); 辽宁省“兴辽英才”计划(XLYC2203090); 中国科学院国际合作伙伴计划项目(172GJHZ2022094FN)

Alumina-based Directionally Solidified Eutectic Ceramics:Microstructure, Control Strategies and Environmental Stability

ZHOU Cui1, LI Jie2, SUN Luchao2, SU Haijun3, WANG Jingyang2   

  1. 1. Institute of Coating Technology for Hydrogen Gas Turbines, Liaoning Academy of Materials, Shenyang 110016, China;
    2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
    3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
  • Received:2025-10-31 Revised:2025-12-26
  • Contact: SUN Luchao, professor. E-mail: lcsun@imr.ac.cn; SU Haijun, professor. E-mail: shjnpu@nwpu.edu.cn
  • About author:ZHOU Cui (1997-), female, PhD. E-mail: zhouc@lam.ln.cn
  • Supported by:
    National Natural Science Foundation of China (52130204, U21A2063); National Key R&D Program of China (2024YFB3714503); LiaoNing Revitalization Talents Program (XLYC2203090); International Partnership Program of the Chinese Academy of Sciences (172GJHZ2022094FN)

摘要: 随着航空工业的快速发展,航空发动机所采用的高温结构材料正面临着日益严苛的服役环境与性能挑战。为满足未来先进航空动力系统的需求,推重比超过10的先进航空发动机的进气口温度将突破1500 ℃。氧化铝基定向凝固共晶陶瓷凭借其超过1700 ℃的极高熔点、优异的高温组织稳定性、高温力学性能稳定性以及本征抗氧化性能,展现出在高温氧化环境中长期稳定运行的巨大潜力,被视为下一代极端工况下理想的关键候选材料。本文首先综述了该类陶瓷材料的微观组织特征,涵盖其典型组织形貌、晶体学取向关系及界面结构特性;重点探讨了微观组织的调控方法,包括工艺参数的优化调控、共晶组分优选以及高熵化设计等创新策略;随后深入分析了材料在典型服役环境下(高温、氧化及化学腐蚀介质)的稳定性表现。在此基础之上,凝练总结并揭示了当前研究领域中所面临的关键科学问题与核心技术瓶颈,并对未来研究方向提出了前瞻性展望,旨在为该类陶瓷材料在先进航空动力系统中的工程化应用提供理论依据与技术支撑。

关键词: 氧化铝基共晶陶瓷, 定向凝固, 组织调控, 组织稳定性, 环境稳定性, 综述

Abstract: With rapid advancement of aviation industry, high-temperature structural materials used in aero-engines are encountering increasingly severe service environments and performance challenges. To meet exacting requirements of future technologies, turbine inlet temperature of advanced aero-engines with a thrust-to-weight ratio exceeding 10 is projected to surpass 1500 ℃. Al2O3-based directionally solidified eutectic ceramics are regarded as ideal and key candidate materials for next-generation extreme working conditions, particularly for long-term use in high-temperature oxidative environments, owing to their melting points exceeding 1700 ℃, outstanding high-temperature stability, and inherent oxidation resistance. This paper provides a comprehensive review of microstructural characteristics of Al2O3-based directionally solidified eutectic ceramics, with particular emphasis on their morphological features, crystallographic relationships and interfacial structures. Subsequently, discussion focuses on strategies for microstructure control, including optimization of processing parameters, optimal selection of eutectic components and implementation of innovative approaches such as high-entropy design. Furthermore, a comprehensive analysis is conducted to evaluate stability of these materials under typical high-temperature service conditions, including thermal exposure, oxidative environments, and chemically corrosive media, with particular emphasis on their chemical stability characteristics. Based on this comprehensive review, key scientific issues and core technical challenges in current research are identified. Future research directions are also proposed to establish a theoretical foundation and provide technical guidance for engineering application of these materials in advanced aero-engine systems.

Key words: Al2O3-based eutectic ceramic, directional solidification, microstructure control, microstructure stability, environmental stability, review

中图分类号: