• •
余飞宇1, 王文清2, 张学勤3, 何汝杰1,2
收稿日期:2025-10-30
修回日期:2025-12-24
通讯作者:
张学勤, 讲师. E-mail: zhangxueqin@tyut.edu.cn;何汝杰, 教授. E-mail: herujie@bit.edu.cn
作者简介:余飞宇(2001-), 男, 硕士研究生. E-mail: 15055452608@163.com
基金资助:YU Feiyu1, WANG Wenqing2, ZHANG Xueqin3, HE Rujie1,2
Received:2025-10-30
Revised:2025-12-24
Contact:
ZHANG Xueqin, lecturer. E-mail: zhangxueqin@tyut.edu.cn; HE Rujie, professor. E-mail: herujie@bit.edu.cn
About author:Yu Feiyu (2001-), male, Master candidate. E-mail: 15055452608@163.com
Supported by:摘要: 双相网络互穿复合材料(Interpenetrating phase composites, IPCs)通过陶瓷骨架与聚合物或金属在三维空间的连续贯通, 突破了陶瓷材料固有脆性瓶颈, 为开发下一代抗冲击、耐损伤的先进陶瓷材料开辟了新可能。尤其是陶瓷材料增材制造(Additive manufacturing, AM)技术的发展为IPCs的研制提供了创新途径。因此, 本文系统综述了基于AM陶瓷点阵结构的IPCs研究进展。首先简述了适用于陶瓷材料的常见AM技术, 包括光固化、粉末床熔融、材料挤出及黏结剂喷射等, 阐明其各自的技术特点与适用范围。其次, 归纳与分类了以蜂窝、桁架、板晶格和壳结构等为代表的典型陶瓷点阵结构, 并阐述了其在力学性能方面的独特优势。随后, 重点聚焦于聚合物/陶瓷与金属/陶瓷两类关键IPCs体系, 深入概述了其核心复合工艺(如熔渗、电沉积等), 并系统分析了陶瓷点阵结构的构型设计、体积分数调控与梯度化设计等关键参数对IPCs力学性能的影响规律。最后, 基于当前研究现状, 总结并分析了IPCs在复合工艺、多尺度结构优化设计, 以及实现结构功能一体化应用等方面面临的核心挑战与未来潜在发展机遇。
中图分类号:
余飞宇, 王文清, 张学勤, 何汝杰. 基于增材制造陶瓷点阵的双相网络互穿复合材料研究进展与挑战[J]. 无机材料学报, DOI: 10.15541/jim20250436.
YU Feiyu, WANG Wenqing, ZHANG Xueqin, HE Rujie. Additive Manufactured Ceramic Lattice-based Interpenetrating Phase Composites: Progress and Challenges[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250436.
| [1] LIU Z Q, JIAO D, MEYERS M A,et al. Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder-the peacock’s tail coverts shaft and its components. Acta Biomaterialia, 2015, 17: 137. [2] LIU X, ZHANG F, ZOU J, et al. Biomimetic multi-layered protective materials with prestress and a periodic laminated structure. Journal of Materiomics, DOI: 10.1016/j.jmat.2025.101095. [3] YANG T, CHEN H S, JIA Z A,et al. A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, Protoreaster nodosus. Science, 2022, 375(6581): 647. [4] YANG T, JIA Z A, WU Z L,et al. High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid. Nature Communications, 2022, 13: 6083. [5] GAO Y C, QIN B, WEN S M,et al. Ambient pressure drying of freeze-cast ceramics from aqueous suspension. Nano Letters, 2023, 23(19): 9011. [6] ZHAI X F, CHEN J Y, WANG Y R,et al. Fabrication of Al2O3 ceramic cores with high porosity and high strength by vat photopolymerization 3D printing and sacrificial templating. Ceramics International, 2023, 49(19): 32096. [7] ZHANG G X, ZOU B, WANG X F,et al. The 3D-Printed building and performance of Al2O3 ceramic filters with gradient hole density structures. Ceramics International, 2023, 49(19): 31496. [8] KANG J H, SAKTHIABIRAMI K, JANG K J,et al. Mechanical and biological evaluation of lattice structured hydroxyapatite scaffolds produced via stereolithography additive manufacturing. Materials & Design, 2022, 214: 110372. [9] BUTLER N, ZHAO Y, LU S,et al. Effects of light exposure intensity and time on printing quality and compressive strength of β-TCP scaffolds fabricated with digital light processing. Journal of the European Ceramic Society, 2024, 44(4): 2581. [10] WANG Y, CHEN S S, LIANG H W,et al. Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceramics International, 2022, 48(19): 27681. [11] BAUER J, CROOK C, IZARD A G,et al. Additive manufacturing of ductile, ultrastrong polymer-derived nanoceramics. Matter, 2019, 1(6): 1547. [12] WU S Q, YANG L, WANG C S,et al. Si/SiC ceramic lattices with a triply periodic minimal surface structure prepared by laser powder bed fusion. Additive Manufacturing, 2022, 56: 102910. [13] ABDELMOULA M, KÜÇÜKTÜRK G, GROSSIN D,et al. Direct selective laser sintering of silicon carbide: realizing the full potential through process parameter optimization. Ceramics International, 2023, 49(20): 32426. [14] KIM S Y, SESSO M L, FRANKS G V.Effect of internal lattice structure on the flexural strength of 3D printed hierarchical porous ultra-high temperature ceramic (ZrB2).Journal of the European Ceramic Society, 2023, 43(5): 1762. [15] ZHAO Q X, CHEN R, WANG S S,et al. Utilization of fused deposition modeling in the fabrication of lattice structural Al2O3 ceramics. Ceramics International, 2024, 50(19): 35193. [16] WU H D, JIANG C, TANG C,et al. Binder jetting printed in situ mullite strengthened alumina ceramics with excellent mechanical and thermal properties through multi-phase infiltration. Virtual and Physical Prototyping, 2024, 19(1): e2427240. [17] CHOI J H, KWON M, HWANG K T,et al. Mechanical reinforcement of complex shaped ceramic filter fabricated using binder jetting process with photocurable composite ink. Journal of Materials Research and Technology, 2025, 35: 5514. [18] YILDIZ B K, YILDIZ A S, KUL M,et al. Mechanical properties of 3D-printed Al2O3 honeycomb sandwich structures prepared using the SLA method with different core geometries. Ceramics International, 2024, 50(2): 2901. [19] HUANG Z Y, LIU L Y, YUAN J M,et al. Stereolithography 3D printing of Si3N4 cellular ceramics with ultrahigh strength by using highly viscous paste. Ceramics International, 2023, 49(4): 6984. [20] SHEN M H, FU R L, LIU Y N,et al. Mechanical characterization of Al2O3 twisted honeycomb structures fabricated by digital light processing 3D printing. Ceramics International, 2023, 49(17): 29348. [21] ZOK F W, LATTURE R M, BEGLEY M R.Periodic truss structures.Journal of the Mechanics and Physics of Solids, 2016, 96: 184. [22] KARRI C P, KAMBAGOWNI V.Finite element analysis approach for optimal design and mechanical performance prediction of additive manufactured sandwich lattice structures.Journal of the Institution of Engineers: India: Series D, 2025, 106(1): 353. [23] WANG X X, LI Z D, DENG J J,et al. Unprecedented strength enhancement observed in interpenetrating phase composites of aperiodic lattice metamaterials. Advanced Functional Materials, 2025, 35(1): 2406890. [24] XU Y C, GAO Y, YANG X D,et al. Relationship between topological structures and mechanical properties of artificially architected SiC cellular ceramics: experimental and numerical study. Journal of the European Ceramic Society, 2023, 43(10): 4263. [25] ZHANG X Q, ZHANG K Q, ZHANG B,et al. Additive manufacturing, quasi-static and dynamic compressive behaviours of ceramic lattice structures. Journal of the European Ceramic Society, 2022, 42(15): 7102. [26] ZENG Y, SUN L J, YAO H H,et al. Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology. Ceramics International, 2022, 48(8): 10613. [27] CROOK C, BAUER J, GUELL IZARD A,et al. Plate-nanolattices at the theoretical limit of stiffness and strength. Nature Communications, 2020, 11: 1579. [28] ZHANG B, ZHANG X Q, WANG W Q,et al. Mechanical properties of additively manufactured Al2O3 ceramic plate-lattice structures: experiments & simulations. Composite Structures, 2023, 311: 116792. [29] AL-KETAN O, AL-RUB R K A. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces.Material Design & Processing Communications, 2021, 3(6): e205. [30] LU J X, DONG P, ZHAO Y T,et al. 3D printing of TPMS structural ZnO ceramics with good mechanical properties. Ceramics International, 2021, 47(9): 12897. [31] VIJAYAVENKATARAMAN S, KUAN L Y, LU W F.3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants.Materials & Design, 2020, 191: 108602. [32] LU C X, DING J, JIANG X,et al. Enhancing mechanical properties and damage tolerance of additive manufactured ceramic TPMS lattices by hybrid design. Journal of the American Ceramic Society, 2024, 107(10): 6524. [33] IZARD A G, BAUER J, CROOK C,et al. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small, 2019, 15(45): 1903834. [34] ANANDAN N, WILSON C G, MEZA L R.Functionally graded spinodal nanoarchitected ceramics with unprecedented recoverability.International Journal of Mechanical Sciences, 2025, 301: 110453. [35] BRODNIK N R, SCHMIDT J, COLOMBO P,et al. Analysis of multi-scale mechanical properties of ceramic trusses prepared from preceramic polymers. Additive Manufacturing, 2020, 31: 100957. [36] LEE E, JIA Z A, YANG T,et al. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: a computational study. Acta Biomaterialia, 2022, 154: 312. [37] MAO A R, ZHOU S T, HONG Y L,et al. Three-dimensional printing of cuttlebone-inspired porous ceramic materials. ACS Applied Materials & Interfaces, 2024, 16(31): 41202. [38] THAKUR M S H, NATH M D, AJAYAN P M,et al. Macroscale ceramic origami structures with hyper-elastic coating. Advanced Composites and Hybrid Materials, 2025, 8(2): 226. [39] ZHANG X Q, SU R Y, GAO X,et al. Circumventing brittleness of 3D-printed Al2O3 cellular ceramic structures via compositing with polyurea. Rare Metals, 2024, 43(11): 5994. [40] SAJADI S M, VÁSÁRHELYI L, MOUSAVI R, ,et al. Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances. Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7(28): eabc5028. [41] WANG G S.Influence of polydopamine/polylactic acid coating on mechanical properties and cell behavior of 3D-printed calcium silicate scaffolds.Materials Letters, 2020, 275: 128131. [42] SUN J X, YU S X, WADE-ZHU J,et al. 3D printing of ceramic composite with biomimetic toughening design. Additive Manufacturing, 2022, 58: 103027. [43] SINGH A, KARATHANASOPOULOS N.Mechanics of ceramic-epoxy interpenetrating phase composites engineered with TPMS and spinodal topologies.Composites Science and Technology, 2024, 253: 110632. [44] WU H L, GUO A F, KONG D K,et al. Nacre-like carbon fiber-reinforced biomimetic ceramic composites: fabrication, microstructure, and mechanical performance. Ceramics International, 2024, 50(14): 25388. [45] ZHANG X Q, MENG Q Y, ZHANG K Q,et al. 3D-printed bioinspired Al2O3/polyurea dual-phase architecture with high robustness, energy absorption, and cyclic life. Chemical Engineering Journal, 2023, 463: 142378. [46] LI W Y, ZHANG K Q, ZHANG Z J, et al. Damage tolerance and cyclic stability of 3D-architected Al2O3/polymer composites. Journal of Materiomics, DOI: 10.1016/j.jmat.2025.101112. [47] ZHAO Y D, YAP X Y, YE P C,et al. Enhanced mechanical and thermal properties in 3D printed Al2O3 lattice/epoxy interpenetrating phase composites. Mechanics of Materials, 2024, 190: 104930. [48] LI X W, KIM M, ZHAI W.Ceramic microlattice and epoxy interpenetrating phase composites with simultaneous high specific strength and specific energy absorption.Materials & Design, 2022, 223: 111206. [49] ZHONG K, WANG Z G, CUI J,et al. Mechanical behavior of reinforced Al2O3 lattice structures: effects of structural parameters from experiments and simulations. Thin-Walled Structures, 2025, 207: 112753. [50] DONG X S, WANG G Q, WANG S R,et al. Designing and additive manufacturing of biomimetic interpenetrating phase zirconia-resin composite dental restorations with TPMS structure. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 160: 106718. [51] EDER M, JUNGNIKL K, BURGERT I.A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.). Trees, 2009, 23: 79. [52] HABIBI M K, SAMAEI A T, GHESHLAGHI B,et al. Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms. Acta Biomaterialia, 2015, 16: 178. [53] SU J M, GUO L, ZHU H J,et al. High toughness of 3D printed ceramic/polymer interpenetrating phase composite with gradient structures under multi-directional stresses. Journal of Materials Science, 2025, 60(9): 4197. [54] ZHONG K, CUI J, WANG Z G,et al. Synergistic gradient-composite effects on mechanical reinforcement of ceramic lattice structures. Thin-Walled Structures, 2025, 216: 113729. [55] WEN S M, CHEN S M, GAO W T,et al. Biomimetic gradient bouligand structure enhances impact resistance of ceramic-polymer composites. Advanced Materials, 2023, 35(21): e2211175. [56] CHENG D X, XIA Y F, YAO D X,et al. Quasi-static and dynamic mechanical properties of interpenetrating zirconia-toughened alumina-aluminum alloy composite material. Materials Today Communications, 2024, 41: 110929. [57] LI S, LI Y F, WANG Q W,et al. Fabrication of 3D-SiC/aluminum alloy interpenetrating composites by DIW and pressureless infiltration. Ceramics International, 2021, 47(17): 24340. [58] ZHANG Z J, LI W Y, FENG Y J,et al. Strongly improved mechanical properties of aluminum composites by designed ceramic lattice. Journal of Materials Research and Technology, 2025, 35: 2637. [59] ZHANG Z, FENG Y, LI W,et al. Stiff and ductile 3D-architectured metal/ceramic composites. Composites Part A: Applied Science and Manufacturing, 2025, 194: 108904. [60] LI Y, ZHONG S J, QIAN M F,et al. Design and fabrication of bionic Bouligand-structured SiC/2024Al composites via binder jetting additive manufacturing and pressure infiltration. Composites Part B: Engineering, 2025, 301: 112526. [61] CASAS-LUNA M, MONTUFAR E B, HORT N,et al. Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms. Journal of Magnesium and Alloys, 2022, 10(12): 3641. [62] HUANG J C, DARYADEL S, MINARY-JOLANDAN M.Low-cost manufacturing of metal-ceramic composites through electrodeposition of metal into ceramic scaffold.ACS Applied Materials & Interfaces, 2019, 11(4): 4364. [63] KHAKZAD M, KHADEMI M, PERRUCI G F,et al. Hybrid manufacturing of ceramic-metal composites by vat polymerization 3D printing and pulse electroplating. Journal of Manufacturing Processes, 2025, 144: 157. [64] LU J J, WANG D, ZHANG K Q,et al. Mechanical properties of Al2O3 and Al2O3/Al with Gyroid structure obtained by stereolithographic additive manufacturing and melt infiltration. Ceramics International, 2022, 48(16): 23051. [65] ZHU M M, DENG C Z, ZHANG Z F,et al. Stereolithography 3D printing ceramics for ultrahigh strength aluminum matrix composites. Journal of Manufacturing Processes, 2025, 139: 126. [66] BAUER J, SALA-CASANOVAS M, AMIRI M, ,et al. Nanoarchitected metal/ceramic interpenetrating phase composites. Science Advances. Nanoarchitected metal/ceramic interpenetrating phase composites. Science Advances, 2022, 8(33): eabo3080. [67] CHEN F, DING J, JIA M Y,et al. 3D bi-continuous interpenetrating networks enables Al-matrix composites with enhanced mechanical energy absorption capacity. Composite Structures, 2025, 368: 119293. [68] SANTOS S, MATOS C, DUARTE I,et al. Effect of TPMS reinforcement on the mechanical properties of aluminium-alumina interpenetrating phase composites. Progress in Additive Manufacturing, 2025, 10(2): 1187. [69] CHENG D, XIA Y, YAO D,et al. The dynamic protective performance of interpenetrating zirconia toughened alumina-aluminum alloy composite material prepared by 3D printing and metal infiltration. Journal of Alloys and Compounds, 2025, 1022: 179953. [70] SUN J X, WANG Y D, ZOU J,et al. Ceramic/metal composites fabricated via 3D printing and ultrasonic-assisted infiltration for high specific strength and energy absorption. Journal of Alloys and Compounds, 2024, 1006: 176216. [71] LI S W, WANG G, ZHANG K Q,et al. Mechanical properties of Al2O3 and Al2O3/Al interpenetrated functional gradient structures by 3D printing and melt infiltration. Journal of Alloys and Compounds, 2023, 950: 169948. [72] HU Y B, JIANG M Y, SHEN P.Compositionally gradient Al2O3-B4C/Al composites with interpenetrating structure and tailored propertiesvia material extrusion-based additive manufacturing and pressure infiltration. Virtual and Physical Prototyping, 2025, 20(1): e2450101. [73] WU Y, ZHAO R D, LIANG B,et al. Construction of C/SiC-Cu3Si-Cu interpenetrating composites for long-duration thermal protection at 2500 ℃ by cooperative active-passive cooling. Composites Part B: Engineering, 2023, 266: 111015. [74] JIN Y, DU J K, HE Y.Optimization of process planning for reducing material consumption in additive manufacturing.Journal of Manufacturing Systems, 2017, 44: 65. [75] SRIDHAR S, VENKATESH K, REVATHY G,et al. Adaptive fabrication of material extrusion-AM process using machine learning algorithms for print process optimization. Journal of Intelligent Manufacturing, 2025, 36(7): 5087. [76] LI S Y, WEI H K, YUAN S Q,et al. Collaborative optimization design of process parameter and structural topology for laser additive manufacturing. Chinese Journal of Aeronautics, 2023, 36(1): 456. [77] CHALLAPALLI A, PATEL D, LI G Q.Inverse machine learning framework for optimizing lightweight metamaterials.Materials & Design, 2021, 208: 109937. [78] WU C, LUO J J, ZHONG J X,et al. Topology optimisation for design and additive manufacturing of functionally graded lattice structures using derivative-aware machine learning algorithms. Additive Manufacturing, 2023, 78: 103833. |
| [1] | 袁旺, 胡建宝, 周亮, 阚艳梅, 张翔宇, 董绍明. 氩气气氛热处理对Shicolon-II SiC纤维机械性能和微观结构演变的影响[J]. 无机材料学报, 2026, 41(1): 119-128. |
| [2] | 范雨竹, 王媛, 王林燕, 向美玲, 鄢雨婷, 黎本慧, 李敏, 文志东, 王海超, 陈永福, 邱会东, 赵波, 周成裕. 氧化石墨烯基吸附材料去除水体中Pb(II): 制备、性能及机理[J]. 无机材料学报, 2026, 41(1): 12-26. |
| [3] | 张永恒, 陈继新. 镱铝硅酸盐玻璃和SiC改性h-BN基复合材料的制备与性能研究[J]. 无机材料学报, 2026, 41(1): 37-44. |
| [4] | 徐锦涛, 高攀, 何唯一, 蒋圣楠, 潘秀红, 汤美波, 陈锟, 刘学超. 3C-SiC晶体制备研究进展[J]. 无机材料学报, 2026, 41(1): 1-11. |
| [5] | 余升阳, 苏海军, 姜浩, 余明辉, 姚佳彤, 杨培鑫. 激光增材制造超高温氧化物陶瓷孔隙缺陷形成及抑制研究进展[J]. 无机材料学报, 2025, 40(9): 944-956. |
| [6] | 刘江平, 管鑫, 唐振杰, 朱文杰, 罗永明. 含氮挥发性有机化合物催化氧化的研究进展[J]. 无机材料学报, 2025, 40(9): 933-943. |
| [7] | 肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 860-870. |
| [8] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
| [9] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
| [10] | 艾敏慧, 雷波. 微纳米生物活性玻璃: 功能化设计与血管化皮肤再生[J]. 无机材料学报, 2025, 40(8): 921-932. |
| [11] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
| [12] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
| [13] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
| [14] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
| [15] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||