无机材料学报

• •    

基于增材制造陶瓷点阵的双相网络互穿复合材料研究进展与挑战

余飞宇1, 王文清2, 张学勤3, 何汝杰1,2   

  1. 1.北京理工大学(珠海) 海洋科技学域, 珠海 519088;
    2.北京理工大学 先进结构技术研究院, 北京 100081;
    3.太原理工大学 材料科学与工程学院, 太原 030024
  • 收稿日期:2025-10-30 修回日期:2025-12-24
  • 通讯作者: 张学勤, 讲师. E-mail: zhangxueqin@tyut.edu.cn;何汝杰, 教授. E-mail: herujie@bit.edu.cn
  • 作者简介:余飞宇(2001-), 男, 硕士研究生. E-mail: 15055452608@163.com
  • 基金资助:
    国家自然科学基金(52572094)

Additive Manufactured Ceramic Lattice-based Interpenetrating Phase Composites: Progress and Challenges

YU Feiyu1, WANG Wenqing2, ZHANG Xueqin3, HE Rujie1,2   

  1. 1. Marine Science and Technology Domain, Beijing Institute of Technology, Zhuhai 519088, China;
    2. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2025-10-30 Revised:2025-12-24
  • Contact: ZHANG Xueqin, lecturer. E-mail: zhangxueqin@tyut.edu.cn; HE Rujie, professor. E-mail: herujie@bit.edu.cn
  • About author:Yu Feiyu (2001-), male, Master candidate. E-mail: 15055452608@163.com
  • Supported by:
    National Natural Science Foundation of China (52572094)

摘要: 双相网络互穿复合材料(Interpenetrating phase composites, IPCs)通过陶瓷骨架与聚合物或金属在三维空间的连续贯通, 突破了陶瓷材料固有脆性瓶颈, 为开发下一代抗冲击、耐损伤的先进陶瓷材料开辟了新可能。尤其是陶瓷材料增材制造(Additive manufacturing, AM)技术的发展为IPCs的研制提供了创新途径。因此, 本文系统综述了基于AM陶瓷点阵结构的IPCs研究进展。首先简述了适用于陶瓷材料的常见AM技术, 包括光固化、粉末床熔融、材料挤出及黏结剂喷射等, 阐明其各自的技术特点与适用范围。其次, 归纳与分类了以蜂窝、桁架、板晶格和壳结构等为代表的典型陶瓷点阵结构, 并阐述了其在力学性能方面的独特优势。随后, 重点聚焦于聚合物/陶瓷与金属/陶瓷两类关键IPCs体系, 深入概述了其核心复合工艺(如熔渗、电沉积等), 并系统分析了陶瓷点阵结构的构型设计、体积分数调控与梯度化设计等关键参数对IPCs力学性能的影响规律。最后, 基于当前研究现状, 总结并分析了IPCs在复合工艺、多尺度结构优化设计, 以及实现结构功能一体化应用等方面面临的核心挑战与未来潜在发展机遇。

关键词: 陶瓷点阵结构, 双相网络互穿复合材料, 增材制造, 力学性能, 综述

Abstract: Interpenetrating phase composites (IPCs), which achieve a continuous interpenetration of porous ceramic skeletons and polymer or metal phases in 3D space, have opened up a new way to overcome the brittleness of ceramics, and given new possibilities for the development of next-generation impact-resistant and damage-tolerant advanced ceramics. Additive manufacturing (AM) provides support for the controllable preparation of IPCs. Hence, this paper systematically reviews the progress of additive manufactured ceramic lattice-based IPCs. Firstly, AM processes such as vat photopolymerization, powder bed fusion, material extrusion, and binder jetting are introduced, with their respective technical characteristics and scope of application. Nextly, ceramic lattice structures, such as honeycomb, truss, plate lattice, and shell structures, are discussed as well as their unique advantages in mechanical properties. Then, core composite processes including infiltration and electrodeposition of polymer/ceramic and metal/ceramic IPCs for the two key IPCs systems are provided, and the effects of key parameters such as structural configuration, volume fraction, and gradient design on their mechanical properties, are summarized. Finally, based on the current research status, the challenges and opportunities in terms of composite processes, multi-scale structural design, and multifunctional integration, are further analyzed and forecasted.

Key words: ceramic lattice structure, interpenetrating phase composite, additive manufacturing, mechanical property, review

中图分类号: