[1] PADTURE N P.Advanced structural ceramics in aerospace propulsion.Nature Materials, 2016, 15(8): 804. [2] VIX-GUTERL C, EHRBURGER P.Effect of thermal treatment on the reactivity of SiC-based fibres.Journal of Materials Science, 1996, 31(20): 5363. [3] IVEKOVIĆ A, NOVAK S, DRAŽIĆ G,et al. Current status and prospects of SiCf/SiC for fusion structural applications. Journal of the European Ceramic Society, 2013, 33(10): 1577. [4] MAZERAT S, PAILLER R.Simulating the variability and scale effect for slow crack growth in Hi-Nicalon SiC-based tows: a parametric study.Journal of the European Ceramic Society, 2021, 41(14): 6834. [5] SOMMERS A, WANG Q, HAN X,et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review. Applied Thermal Engineering, 2010, 30(11/12): 1277. [6] WANG P R, LIU F Q, WANG H,et al. A review of third generation SiC fibers and SiCf/SiC composites. Journal of Materials Science & Technology, 2019, 35(12): 2743. [7] KATOH Y, SNEAD L L, HENAGER C H,et al. Current status and recent research achievements in SiC/SiC composites. Journal of Nuclear Materials, 2014, 455(1/2/3): 387. [8] CHOLLON G, PAILLER R, NASLAIN R,et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon). Journal of Materials Science, 1997, 32(2): 327. [9] SMITH P R, GAMBONE M L, WILLIAMS D S,et al. Heat treatment effects on SiC fiber. Journal of Materials Science, 1998, 33(24): 5855. [10] SACKS M D.Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers.Journal of the European Ceramic Society, 1999, 19(13/14): 2305. [11] BHATT R T, ELDRIDGE J I.Heat treatment effects on microstructure and properties of CVI SiC/SiC composites with Sylramic™-iBN SiC fibers.Journal of the European Ceramic Society, 2023, 43(6): 2376. [12] BHATT R T, JASKOWIAK M H.Creep and cyclic durability of CVI SiC/SiC composites.Journal of the European Ceramic Society, 2024, 44(7): 4437. [13] DONG H N, GAO X G, ZHANG S,et al. Effects of heat treatment on the mechanical properties at elevated temperatures of plain-woven SiC/SiC composites. Journal of the European Ceramic Society, 2022, 42(2): 412. [14] YAJIMA S, HAYASHI J, OMORI M.Continuous silicon carbide fiber of high tensile strength.Chemistry Letters, 1975, 4(9): 931. [15] BUNSELL A R, PIANT A.A review of the development of three generations of small diameter silicon carbide fibres.Journal of Materials Science, 2006, 41(3): 823. [16] JONES R E, PETRAK D, RABE J, ,et al. SYLRAMIC™ SiC fibers for CMC reinforcement. Journal of Nuclear Materials. SYLRAMIC™ SiC fibers for CMC reinforcement. Journal of Nuclear Materials, 2000, 283/284/285/286/287: 556. [17] ZHANG Y, WU C L, WANG Y D,et al. A detailed study of the microstructure and thermal stability of typical SiC fibers. Materials Characterization, 2018, 146: 91. [18] TAKEDA M, IMAI Y, ICHIKAWA H,et al. Thermal stability of SiC fiber prepared by an irradiation- curing process. Composites Science and Technology, 1999, 59(6): 793. [19] SHA J J, PARK J S, HINOKI T,et al. Tensile properties and microstructure characterization of Hi-NicalonTM SiC fibers after loading at high temperature. International Journal of Fracture, 2006, 142(1): 1. [20] DONG S M, CHOLLON G, LABRUGÈRE C,et al. Characterization of nearly stoichiometric SiC ceramic fibres. Journal of Materials Science, 2001, 36(10): 2371. [21] YUAN Q, LI Y Q, SONG Y C.Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method.Ceramics International, 2017, 43(12): 9128. [22] BODET R, LAMON J, JIA N Y,et al. Microstructural stability and creep behavior of Si-C-O (nicalon) fibers in carbon monoxide and argon environments. Journal of the American Ceramic Society, 1996, 79(10): 2673. [23] KISTER G, HARRIS B.Tensile properties of heat-treated nicalon and hi-nicalon fibres.Composites Part A: Applied Science and Manufacturing, 2002, 33(3): 435. [24] JIA N Y, BODET R, TRESSLER R E.Effects of microstructural instability on the creep behavior of Si-C-O (nicalon) fibers in argon.Journal of the American Ceramic Society, 1993, 76(12): 3051. [25] MO R, YIN X W, YE F,et al. Mechanical and microwave absorbing properties of Tyranno® ZMI fiber annealed at elevated temperatures. Ceramics International, 2017, 43(12): 8922. [26] YOUNGBLOOD G E, LEWINSOHN C, JONES R H,et al. Tensile strength and fracture surface characterization of Hi-Nicalon™ SiC fibers. Journal of Nuclear Materials, 2001, 289(1/2): 1. [27] WILSON M, OPILA E.A review of SiC fiber oxidation with a new study of Hi-Nicalon SiC fiber oxidation.Advanced Engineering Materials, 2016, 18(10): 1698. [28] HUGUET-GARCIA J, JANKOWIAK A, MIRO S,et al. In situ TEM annealing of ion-amorphized Hi Nicalon S and Tyranno SA3 SiC fibers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 374: 76. [29] CAO S Y, WANG J, WANG H.Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment.CrystEngComm, 2016, 18(20): 3674. [30] MORIMOTO T, OGASAWARA T.Potential strength of Nicalon™, Hi Nicalon™, and Hi Nicalon Type S™ monofilaments of variable diameters.Composites Part A: Applied Science and Manufacturing, 2006, 37(3): 405. [31] TOBIN Z, KERNS P, NISLY N,et al. Hi-NICALON™ Type S fiber tow surface desizing and decarburization via heat treatment. Ceramics International, 2021, 47(23): 33709. [32] MAH T, HECHT N L, MCCULLUM D E,et al. Thermal stability of SiC fibres (nicalon®). Journal of Materials Science, 1984, 19(4): 1191. [33] GOU Y Z, WANG H, JIAN K.Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties.Journal of the European Ceramic Society, 2017, 37(3): 907. [34] ZHANG S N, ZHONG Z H, HUA Y,et al. Properties of super heat-resistant silicon carbide fibres with in situ BN coating. Journal of the European Ceramic Society, 2022, 42(14): 6404. [35] GOSSET D, COLIN C, JANKOWIAK A,et al. X-ray diffraction study of the effect of high-temperature heat treatment on the microstructural stability of third-generation SiC fibers. Journal of the American Ceramic Society, 2013, 96(5): 1622. [36] BHATT R T, SOLA’ F, EVANS L J,et al. Microstructural, strength, and creep characterization of Sylramic™, Sylramic™-iBN and super Sylramic™-iBN SiC fibers. Journal of the European Ceramic Society, 2021, 41(9): 4697. [37] CHEN X H, SUN Z G, NIU X M,et al. Evolution of the structure and mechanical performance of Cansas-II SiC fibres after thermal treatment. Ceramics International, 2021, 47(19): 27217. [38] CHEN Y H, CHEN Z K, ZHANG R Q,et al. Structural evolution and mechanical properties of Cansas-III SiC fibers after thermal treatment up to 1700 ℃. Journal of the European Ceramic Society, 2021, 41(10): 5036. [39] XIAO Y, MA C L, XU H,et al. Mechanical properties and microstructural evolution of Cansas-III SiC fibers after thermal exposure in different atmospheres. Ceramics International, 2022, 48(22): 32804. [40] SHA J J, NOZAWA T, PARK J S,et al. Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers. Journal of Nuclear Materials, 2004, 329: 592. [41] MORSCHER G N, DICARLO J A.A simple test for thermomechanical evaluation of ceramic fibers.Journal of the American Ceramic Society, 1992, 75(1): 136. [42] CAO S Y, WANG J, WANG H.High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N2 atmospheres.Journal of Materials Science, 2016, 51(9): 4650. |