无机材料学报

• • 上一篇    下一篇

反应熔渗法制备Hf-Si基涂层-基体一体化改性C/C复合材料的微观结构及烧蚀性能

赵彤彤1, 代吉祥1, 苏成1, 师艳1, 沙建军1,2   

  1. 大连理工大学 1.力学与航空航天学院;
    2.工业装备结构分析优化与CAE软件全国重点实验室,大连 116024
  • 收稿日期:2025-10-27 修回日期:2025-11-27
  • 通讯作者: 代吉祥, 副教授. E-mail: jxdai@dlut.edu.cn
  • 作者简介:赵彤彤(1998-), 女, 博士研究生. E-mail: zttz@mail.dlut.edu.cn
  • 基金资助:
    国防科技大学新型陶瓷纤维及其复合材料重点实验室(6142907230302); 国家重点研发计划(2022YFB3707700)

Microstructure and Ablation Resistance of C/C Composites Modified by Hf-Si-Based Coating-Matrix Integrated Structure Fabricated by Reactive Melt Infiltration

ZHAO Tongtong1, DAI Jixiang1, SU Cheng1, SHI Yan1, SHA Jianjun1,2   

  1. 1. School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China;
    2. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
  • Received:2025-10-27 Revised:2025-11-27
  • Contact: Dai Jixiang, associate professor. E-mail: jxdai@dlut.edu.cn
  • About author:Zhao Tongtong (1998-), female, PhD candidate. E-mail: zttz@mail.dlut.edu.cn
  • Supported by:
    Science and Technology on Advanced Ceramic Fiber and Composites Laboratory; National university of Defence Technology (6142907230302); National Key R&D Program of China (2022YFB3707700)

摘要: 为提升C/C复合材料在超高温长时环境下的抗烧蚀性能,本研究采用非包埋的反应熔渗法,成功制备了Hf-Si基涂层-基体一体化改性C/C复合材料。微观结构分析表明,涂层和基体主要由HfC、SiC和HfSi2相构成,两者通过化学反应形成紧密结合的界面。材料内部基体的致密度及组分构成沿渗透方向呈现梯度分布:靠近入渗端孔隙填充致密,基体相以HfC-HfSi2为主;远离入渗端残存较多孔隙,基体相以SiC和Si-HfSi2两相共晶组织为主。表面涂层结构连续且致密,厚度约120 μm,其主要由SiC外层和HfC-HfSi2-SiC内层构成。对复合材料反应形成机制的深入探究表明,HfC-SiC-HfSi2涂层-基体一体化结构是熔体浸渗-反应与气相渗透-沉积协同作用的结果。氧乙炔烧蚀测试结果表明,该复合材料具有优异的抗高温烧蚀性能。在2500 ℃下烧蚀考核60、180、600和3540 s后,材料的线烧蚀率分别为-3.52、-1.35、-0.85和 0.118 μm/s。复合材料优异的抗烧蚀性能源于表面多组分涂层协同氧化生成的连续致密HfO2保护层,以及涂层下方基体氧化生成的HfO2-SiO2-HfSiO4多相混合氧化物层。两者共同作用,有效抑制了氧气向内扩散,从而显著延缓了复合材料内部的氧化烧蚀进程。本研究为高性能一体化热防护结构的制备提供了一种可行的技术策略。

关键词: 反应熔渗法, 超高温陶瓷, 涂层-基体一体化, 微观结构, 抗烧蚀性能

Abstract: To enhance the ablation resistance of C/C composites under ultra-high-temperature and long-duration conditions, a non-embedded reactive melt infiltration technique was employed to fabricate an Hf-Si-based coating-matrix integrated modified C/C composite. Microstructural analysis revealed that the coating and matrix primarily consist of HfC, SiC, and HfSi2, with strong interfacial bonding formed between them through chemical reactions. Within the materials, the matrix density and composition exhibited a gradient distribution along the infiltration direction. Specifically, regions proximal to the infiltration source were denser and rich in HfC-HfSi2 phases, whereas distal regions were more porous, with the matrix consisting mainly of SiC and Si-HfSi2 eutectic structure. The surface coating was continuous and dense, with a uniform thickness of approximately 120 µm. It featured a distinct bilayer architecture composed of an outer SiC layer and an inner HfC-HfSi2-SiC layer. An in-depth investigation of the reaction mechanism revealed that the HfC-SiC-HfSi2 coating-matrix integrated structure forms through a synergistic effect of melt infiltration-reaction and vapor permeation-deposition. The composite exhibited exceptional ablation resistance when exposed to an oxyacetylene flame. After ablation tests conducted at 2500 °C for 60, 180, 600, and 3540 s, the linear ablation rates were -3.52, -1.35, -0.85, and 0.118 μm/s, respectively. This outstanding performance is attributed to the in-situ formation of a dual-layer oxide barrier. A dense, continuous HfO2 layer generated from the surface coating works in concert with a multiphase HfO2-SiO2-HfSiO4 oxide layer generated from substrate oxidation. Together, these layers effectively retard inward oxygen diffusion and suppress the oxidative ablation process. This work proposes a viable strategy for designing and fabricating high-performance integrated thermal protection structures.

Key words: reactive melt infiltration, UHTCs, coating-matrix integration, microstructure, ablation resistance

中图分类号: