[1] SUN J L, ZhAO J, HUANG Z F,et al. A review on binderless tungsten carbide: development and application. Nano-Micro Letters, 2020, 12(01): 162. [2] REN X Y, MIAO H Z, PENG Z J.A review of cemented carbides for rock drilling: an old but still tough challenge in geo-engineering.International Journal of Refractory Metals and Hard Materials, 2013, 39: 61. [3] KORNAUS K, RACZKA M, GUBERNAT A,et al. Pressureless sintering of binderless tungsten carbide. Journal of the European Ceramic Society, 2017, 37(15): 4567. [4] GUBERNAT A, RUTKOWSKI P, GRABOWSKI G,et al. Hot pressing of tungsten carbide with and without sintering additives. International Journal of Refractory Metals and Hard Materials, 2014, 43: 193. [5] ANDERSON K P, WOLLMERSHAUSER J A, RYOU H,et al. Nanostructural effects beyond Hall-Petch: towards superhard tungsten carbide. Acta Materialia, 2024, 275: 120004. [6] SHON I J, KIM B R, DOH J M,et al. Properties and rapid consolidation of ultra-hard tungsten carbide. Journal of Alloys and Compounds, 2010, 489(1): L4. [7] KUMAR A K N, WATABE M, KUROKAWA K. The sintering kinetics of ultrafine tungsten carbide powders.Ceramics International, 2011, 37(7): 2643. [8] 邹芹, 李爽, 李艳国. 无粘结相WC硬质合金的研究进展. 硬质合金, 2021, 38(04): 297. [9] MAZO I, MOLINARI A, SGLAVO V M.Electrical resistance flash sintering of tungsten carbide.Materials & Design, 2022, 213: 110330. [10] LIU J L, LIU D G, REN K,et al. Research progress on the flash sintering mechanism of oxide ceramics and its application. Journal of Inorganic Materials, 2022, 37(5): 473. [11] HUANG B, CHEN L D, BAI S Q.Bulk ultrafine binderless WC prepared by spark plasma sintering.Scripta Materialia, 2006, 54(3): 441. [12] ZHAO J F, HOLLAND T, UNUVAR C,et al. Sparking plasma sintering of nanometric tungsten carbide. International Journal of Refractory Metals & Hard Materials, 2009, 27(1): 130. [13] CHA S I, HONG S H.Microstructures of binderless tungsten carbides sintered by spark plasma sintering process.Materials Science and Engineering A, 2003, 356(1-2): 381. [14] LANTSEV E, MALEKHONOVA N, NOKHRIN A,et al. Influence of oxygen on densification kinetics of WC nanopowders during SPS. Ceramics International, 2021, 47(3): 4294. [15] MA D J, KOU Z L, LIU Y J,et al. Sub-micro binderless tungsten carbide sintering behavior under high pressure and high temperature. International Journal of Refractory Metals & Hard Materials, 2016, 54: 427. [16] GRASSO S, POETSCHKE J, RICHTER V,et al. Low-temperature spark plasma sintering of pure nano WC powder. Journal of the American Ceramic Society, 2013, 96(6): 1702. [17] XIE Z P, LI S, AN L N.A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics.Journal of the American Ceramic Society, 2014, 97(4): 1012. [18] ZHAO K, ZHONG W M, SUN M Y,et al. Sintering mechanism of pure B4C ceramic prepared by hot oscillating pressing and with excellent mechanical properties. Advanced Engineering Materials, 2024, 26(16): 2400695. [19] WANG K W, ZHAO K, LIU J L,et al. Interplay of microstructure and mechanical properties of WC-6Co cemented carbides by hot oscillating pressing method. Ceramics International, 2021, 47(14): 20731. [20] LIU D G, FAN J Y, ZHAO K,et al. Preparation of super-strong ZrO2 ceramics using dynamic hot forging. Journal of the European Ceramic Society, 2023, 43(2): 733. [21] ZHAO K, FENG P Z, TAN J,et al. A new route to fabricate high-performance binderless tungsten carbide: Dynamic sinter forging. Journal of the American Ceramic Society, 2023, 106(6): 3343. [22] HE Z B, CHEN F, LIU D G,et al. Sintering behavior of simulating core FCM fuel via hot oscillatory pressing. Journal of Inorganic Materials, 2024, 39(5): 501. [23] 张渤涛, 姚曙, 范建业, et al. 电场辅助动态热锻制备超高韧3YSZ陶瓷. 粉末冶金材料科学与工程, 2024, 29(4): 290. [24] FOX R T, NILSSON R.Binderless tungsten carbide carbon control with pressureless sintering.International Journal of Refractory Metals & Hard Materials, 2018, 76: 82. [25] POETSCHKE J, RICHTER V, MICHAELIS A.Fundamentals of sintering nanoscaled binderless hardmetals.International Journal of Refractory Metals and Hard Materials, 2015, 49: 124. [26] PORZ L.60 years of dislocations in ceramics: a conceptual framework for dislocation mechanics in ceramics.International Journal of Ceramic Engineering & Science, 2022, 4(4): 214. [27] ZHAO M J, ZHU Q Q, ZOU J,et al. Binderless nanocrystalline tungsten carbide with enhanced hardness induced by high-pressure sintering. Journal of the European Ceramic Society, 2024, 44(8): 4875. [28] DONG H F, LI B Z, LIU B B,et al. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic. Journal of Materials Science & Technology, 2022, 97: 169. [29] WANG H B, LOU H Z, XING M,et al. Exploring the origin of wear in cemented carbides via molecular dynamics simulations. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106476. [30] SALEM M N, DING K, RӧDEL J,et al. Thermally enhanced dislocation density improves both hardness and fracture toughness in single-crystal SrTiO3. Journal of the American Ceramic Society, 2023, 106: 1344. [31] XU H Y, JI W, GUO W M,et al. Enhanced mechanical properties and oxidation resistance of zirconium diboride ceramics via grain-refining and dislocation regulation. Advanced Science, 2022, 9(6): 2104532. [32] MISHRA M, TANGPATJAROEN C, SZLUFARSKA I.Plasticity-controlled friction and wear in nanocrystalline SiC.Journal of the American Ceramic Society, 2014, 97(4): 1194. [33] FU L C, ZHOU L P.Effect of applied magnetic field on wear behavior of martensitic steel.Journal of Materials Research and Technology, 2019, 8(3): 2880. |