无机材料学报

• 研究论文 •    

振荡压力振幅对碳化钨微观结构和摩擦磨损性能的影响

钟卫民1, 赵科2, 王珂玮3, 刘佃光4, 刘金铃1, 安立楠3   

  1. 1.西南交通大学 力学与航空航天学院, 成都 611756;
    2.四川轻化工大学 材料科学与工程学院, 自贡 643002;
    3.东莞理工学院 机械工程学院, 东莞 523808;
    4.西南交通大学 材料科学与工程学院, 成都 611756
  • 收稿日期:2025-02-11 修回日期:2025-04-01
  • 作者简介:钟卫民(2000-), 男, 硕士研究生. E-mail: 2772759347@qq.com
  • 基金资助:
    河南省航空材料与应用技术重点实验室开放基金(ZHKF-230114)

Effect of Oscillatory Pressure Amplitude on Microstructures and Wear Resistance of Tungsten Carbide

ZHONG Weimin1, ZHAO Ke2, WANG Kewei3, LIU Dianguang4, LIU Jinling1, AN Linan3   

  1. 1. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 611756, China;
    2. School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643002, China;
    3. School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China;
    4. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2025-02-11 Revised:2025-04-01
  • About author:Zhong Weimin (2000–), male, Master candidate. E-mail: 2772759347@qq.com
  • Supported by:
    Henan Key Laboratory of Aeronautical Materials and Applied Technologies (ZHKF-230114)

摘要: 实现超细晶碳化钨的完全致密化而不引起晶粒长大,一直是其工业应用面临的难题。动态烧结锻造工艺可通过振荡压力对不致密材料坯体进行锻造,促进致密化并抑制晶粒生长。本研究探索了动态烧结锻造中压力振幅对碳化钨微观结构和摩擦磨损性能的影响。结果表明,提高压力振幅能够提高碳化钨的相对密度,减小其晶粒尺寸并提高小角晶界和特殊晶界(Σ2)的占比,同时提高其晶粒内的位错密度,达到约1015/m2。当压力振幅为20 MPa时,碳化钨的相对密度、平均晶粒尺寸和位错密度分别达到99.6%、203 nm和1.68×1015/m2。随着压力振幅的提高,碳化钨的摩擦系数和磨损率均逐渐减小,磨损机制以黏着磨损和犁削为主。磨损率减小主要是由于碳化钨几近致密的特性、细小的晶粒及较高的位错密度。晶粒细化和高密度位错有助于提高其在摩擦磨损过程中的塑性变形能力和硬化能力,从而增大磨痕表面的硬度,同时抑制裂纹的萌生和扩展。特殊晶界(Σ2)也能够有效阻碍位错运动而提高应变硬化能力,有助于磨痕表面硬度的提高,进一步抑制磨损。

关键词: 碳化钨, 振荡压力, 微观结构, 摩擦磨损

Abstract: Achieving complete densification of ultrafine-grained tungsten carbide (WC) without inducing grain growth has long been a challenge limiting its industrial applications. The dynamic sinter forging process, which involves forging of incompletely dense materials under oscillatory pressure, facilitates densification while suppressing grain growth. This study explores the effects of oscillatory pressure amplitude during dynamic sinter forging on the microstructure and tribological properties of WC. The results show that increasing pressure amplitude leads to higher relative density of WC, combined with the reduction in grain size, an increase in the proportion of low-angle grain boundaries and special Σ2 boundaries, as well as an enhancement of dislocation density (~10¹⁵/m²). At a pressure amplitude of 20 MPa, the relative density, average grain size, and dislocation density of WC reach 99.6%, 203 nm, and 1.68×10¹⁵/m², respectively. With increasing pressure amplitude, both of the friction coefficient and the wear rate gradually decrease, with adhesive wear and ploughing identified as the dominant wear mechanisms. The reduction in wear rate is attributed to complete densification, finer grains, and higher dislocation density resulting from the increased pressure amplitude. Grain refinement and high dislocation density enhance plastic deformation capacity and hardening ability during wear, thereby increasing hardness of worn surface while mitigating crack initiation and propagation. Furthermore, special Σ2 boundaries also effectively impede dislocation motion, thereby improving strain hardening capability and contributing to the enhanced hardness of worn surface.

Key words: tungsten carbide, oscillatory pressure, microstructure, wear behavior

中图分类号: