无机材料学报

• 综述 •    

核用耐铅铋腐蚀涂层的研究进展

刘春帆1,3, 陈科1,2, 葛芳芳1,2, 黄庆1,2   

  1. 1.中国科学院 宁波材料技术与工程研究所,浙江省数据驱动高安全性能源材料与应用重点实验室,宁波市特种能源材料与化学重点实验室,宁波 315201;
    2.中国科学院宁波技术创新中心前湾研究院,宁波 315336;
    3.中国科学院大学,北京 100049
  • 收稿日期:2025-09-24 修回日期:2025-12-04
  • 通讯作者: 葛芳芳, 研究员. E-mail: gefangfang@nimte.ac.cn
  • 作者简介:刘春帆(2001-), 男,硕士研究生. E-mail: liuchunfan@nimte.ac.cn
  • 基金资助:
    中国科学院战略性先导专项 (XDA041030301)

Research Progress on LBE Corrosion Resistant Coatings

LIU Chunfan1,3, WANG Renda1,2, CHEN Ke1,2, HUANG Qing1,2, GE Fangfang1,2   

  1. 1. Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. Qianwan Institute of CNITECH, Ningbo 315336, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-09-24 Revised:2025-12-04
  • Contact: GE Fangfang, professor. E-mail: gefangfang@nimte.ac.cn
  • About author:LIU Chunfan (2001-), male, Master candidate. E-mail: liuchunfan@nimte.ac.cn
  • Supported by:
    Chinese academy of sciences (No. XDA041030301)

摘要: 铅铋共晶合金(LBE)凭借其高沸点、高导热性及优良安全性能,已成为加速器驱动先进核能系统(ADANES)和铅冷快堆(LFR)的核心冷却剂,但其在高温环境下引发的氧化腐蚀、溶解腐蚀及冲刷腐蚀耦合问题,严重威胁结构材料的服役寿命,制约了先进核能技术的工程化应用。表面涂层技术可在保留基体固有性能的基础上提升耐蚀性,是缓解LBE腐蚀的关键技术途径之一。本文系统综述了核用耐LBE腐蚀涂层的研究进展,首先从腐蚀机理入手,阐明了溶解氧、温度、流速与辐照等多因素协同作用对材料腐蚀的影响规律;进而按金属、陶瓷及复合三大体系,分析解析了FeCrAl(Y)、高熵合金、Al₂O₃、MAX相及梯度复合涂层的耐蚀机制、性能优势与失效行为。研究表明:FeCrAl(Y) 涂层通过“基体-氧化膜”协同作用形成连续 Al₂O₃ 隔离层,其耐蚀性和力学性能与 Cr、Al 含量相关;高熵合金涂层利用晶格畸变与多组元协同氧化抑制腐蚀介质的内扩散,但面临高温相分解与辐照脆化等问题;Al₂O₃ 等陶瓷涂层热力学稳定,可为基底提供有效防护,但在高温环境中因非晶晶化、界面匹配及自修复缺失等而易失效。复合结构涂层通过“金属过渡层+陶瓷功能层”梯度设计,有望实现高结合、高韧性、高阻隔等功能一体化。未来研究需聚焦环境-成分-工艺的耦合调控、多因素服役评价与寿命预测模型,为先进核能系统提供长时可靠防护解决方案。

关键词: 铅冷快堆, 铅铋共晶, 涂层, 耐腐蚀性, 综述

Abstract: Lead-bismuth eutectic (LBE), with its high boiling point, excellent thermal conductivity, and favorable safety properties, has become the core coolant for accelerator-driven advanced nuclear energy systems (ADANES) and lead-cooled fast reactors (LFRs). However, the coupled issues of oxidation corrosion, dissolution corrosion, and erosion corrosion induced by its high-temperature environment severely threaten the service life of structural materials, and hinder the engineering implementation of advanced nuclear technology. Surface coating technology, which enhances corrosion resistance while preserving the inherent properties of the substrate, has emerged as a key strategy to mitigate LBE corrosion. This paper provides a systematic review of research progress on corrosion-resistant coatings for nuclear applications against LBE corrosion. Starting from corrosion mechanisms, the influence of synergistic factors, including dissolved oxygen, temperature, flow velocity, and irradiation, on corrosion behavior are elucidated. Coatings are classified into three major systems, i.e. metallic, ceramic, and composite, and the corrosion resistance mechanisms, performance advantages, and failure behaviors of FeCrAl(Y), high-entropy alloys, Al₂O₃, MAX phases, and gradient composite coatings are analyzed. Research indicates that FeCrAl(Y) coatings form a continuous Al₂O₃ barrier layer through “matrix-oxide film” synergistic effect, with corrosion resistance and mechanical properties correlated to Cr and Al content. High-entropy alloy coatings suppress inward diffusion of corrosion species through lattice distortion and multi-component synergistic oxidation, yet they are susceptible to like high-temperature phase decomposition and irradiation embrittlement. Thermodynamically stable ceramic coatings like Al₂O₃ provide effective substrate protection, yet tend to fail in high-temperature environments due to amorphous crystallization, interface mismatch, and lack of self-healing. Composite-structured coatings with a gradient architecture of “metal transition layers + ceramic functional layers” present a promising approach for integrating high adhesion, high toughness, and high barrier properties. Future efforts should focus on coupled regulation of environment-composition-process, multi-factor service evaluation, and lifetime prediction models to deliver long-term reliable protection solutions for advanced nuclear energy systems.

Key words: LFR, LBE, coatings, corrosion resistance, review

中图分类号: