无机材料学报

• 综述 •    

理论计算在高熵陶瓷领域的研究进展

解陈一, 缪花明, 张蔚然, 刘荣军, 王衍飞, 李端   

  1. 国防科技大学 空天科学学院, 长沙 410073
  • 收稿日期:2025-08-19 修回日期:2025-11-04
  • 通讯作者: 刘荣军, 研究员. E-mail: rongjunliu@163.com
  • 作者简介:解陈一(2000-), 男, 博士研究生. E-mail: 15806148102@163.com
  • 基金资助:
    国家自然科学基金联合基金项目(U2241239)

Research Progress of Theoretical Calculation in the Field of High-entropy Ceramics

XIE Chenyi, MIAO Huaming, ZHANG Weiran, LIU Rongjun, WANG Yanfei, LI Duan   

  1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2025-08-19 Revised:2025-11-04
  • Contact: LIU Rongjun, professor. E-mail: rongjunliu@163.com
  • About author:XIE Chenyi (2000-), male, PhD candidate. E-mail: 15806148102@163.com
  • Supported by:
    National Natural Science Foundation of China (U2241239)

摘要: 高熵陶瓷(High-entropy ceramics,HEC)凭借其高熵效应、晶格畸变效应、迟滞扩散效应、鸡尾酒效应,展现出优异的热学性能、力学性能和化学稳定性,在航空航天、能源、核工业等领域具有巨大的应用潜力。然而,由于HEC巨大的成分与结构空间,传统试错法存在周期长、成本高等问题,难以有效开展针对复杂体系的研究。因此,理论计算成为破解这一难题的核心工具。为梳理近年来理论计算在HEC领域的研究进展,本文聚焦当前主流的理论计算方法,包括第一性原理计算、分子动力学模拟、机器学习以及相图计算技术等,并结合高通量计算与性能描述符等研究范式,全面论述这些方法在HEC研究中的关键作用与具体应用。本文首先简要概述HEC的基本特性和核心效应,接着重点剖析上述计算方法的理论基础,并详细阐述其在HEC组分设计、性能预测、微观结构解析与相稳定性评估等方面的应用实例。最后,总结理论计算在研究多组元体系时面临的主要挑战,如高质量数据集稀缺、构效关系模糊等,并对该领域在数据驱动设计、跨尺度关联、极端环境模拟等方向进行了前瞻性展望。

关键词: 高熵陶瓷, 理论计算, 第一性原理, 多尺度模拟, 机器学习, 综述

Abstract: High-entropy ceramics (HECs) demonstrate exceptional thermal and mechanical properties, along with outstanding chemical stability, which can be attributed to their high entropy, lattice distortion, sluggish diffusion, and cocktail effects. However, the expansive compositional and structural space associated with HEC renders traditional trial-and-error methods time-consuming, costly, and inadequate for the investigation of complex systems. Thus, theoretical calculation has become an indispensable tool for addressing these challenges. To outline recent advances in theoretical calculation for HEC, this article focuses on prevalent calculation methods, including first-principles calculations, molecular dynamics, machine learning, and calculation of phase diagrams. Additionally, it discusses research paradigms such as high-throughput computing and performance descriptors, providing a comprehensive overview of their key roles and specific applications in HEC. The article first outlines the fundamental characteristics and core effects of HEC, then turns to critically examine the theoretical basis of these calculation methods, elaborating on their applications through specific examples in composition design, property prediction, microstructural parsing, and phase stability assessment. Finally, this paper summarizes the major challenges encountered in theoretical calculations in the study of multi-component systems, such as the scarcity of high-quality datasets and the ambiguity of structure-property relationships. It concludes with a forward-looking outlook on the directions in this field, including data-driven design, cross-scale correlation, and extreme environment simulation.

Key words: high-entropy ceramic, theoretical calculation, first principles, multiscale simulation, machine learning, review

中图分类号: