• 综述 •
彭德招1,2, 李瑞1,2, 王文鸿1,2, 王梓瑞1,2, 章志珍1,2
收稿日期:
2025-07-19
修回日期:
2025-09-17
通讯作者:
章志珍,副教授. E-mail:zhangzhzh28@mail.sysu.edu.cn
作者简介:
彭德招, 博士研究生. E-mail: pengdzh5@mail2.sysu.edu.cn
基金资助:
PENG Dezhao1,2, LI Rui1,2, WANG Wenhong1,2, WANG Zirui1,2, ZHANG Zhizhen1,2
Received:
2025-07-19
Revised:
2025-09-17
Contact:
ZHANG Zhizhen, Associate Professor. E-mail: zhangzhzh28@mail.sysu.edu.cn
About author:
PENG Dezhao, PhD candidate. E-mail: pengdzh5@mail2.sysu.edu.cn
Supported by:
摘要: 钠离子电池具有成本低廉、钠资源丰富等优势,是锂离子电池的潜在替代技术。开发兼具高离子电导率与宽电化学窗口的钠离子固态电解质对推动钠离子固态电池的发展与应用具有重要意义。在诸多固态电解质中,氯化物电解质因具有高离子电导率、高氧化电位以及良好的塑性,近年来受到广泛关注。本文系统梳理了钠基氯化物固态电解质的发展脉络,重点总结了固态电解质元素组成、晶体结构与离子电导率之间的内在关联,并阐述通过阳/阴离子掺杂、非晶化及异质结构复合等策略调控电解质离子输运性质的作用机制。此外,本文讨论了钠基氯化物固态电解质的电化学稳定性及其与正极材料的化学/电化学兼容性,总结了其与钠金属负极的界面失效机制,并简要概述了氯化物基全固态电池中的研究进展。最后,本文凝练了氯化物基全固态钠离子电池在实际应用中面临的关键挑战,并对未来研究方向进行展望,为该类材料在能源转换与储存领域中的实际应用提供指导。
中图分类号:
彭德招, 李瑞, 王文鸿, 王梓瑞, 章志珍. 钠氯化物固态电解质研究进展[J]. 无机材料学报, DOI: 10.15541/jim20250307.
PENG Dezhao, LI Rui, WANG Wenhong, WANG Zirui, ZHANG Zhizhen. Research Progress of Sodium Chloride Solid Electrolytes[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250307.
[1] GOODENOUGH J B.Evolution of strategies for modern rechargeable batteries.Acc. Chem. Res., 2013, 46(5): 1053. [2] GOODENOUGH J B, KIM Y.Challenges for rechargeable Li batteries.Chem. Mater., 2009, 22(3): 587. [3] XU J, CAI X, CAI S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater., 2023, 6(5): 35. [4] GAO Y L, PAN Z H, SUN J G, et al. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett., 2022, 14(1): 94. [5] VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater., 2018, 3(4): 3443. [6] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium Ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed., 2015, 54(11): 3431. [7] HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun., 2012, 3: 856. [8] CHE H, CHEN S, XIE Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci, 2017, 10(5): 1075. [9] SUN B, XIONG P, MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater., 2019, 32(18): 1903891. [10] ZHANG X, LI L, FAN E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev., 2018, 47(19): 7239. [11] YAO X, HUANG B, YIN J, et al. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin. Phys. B, 2016, 25(1): 018802. [12] HIRSH H S, LI Y, TAN D H S, et al. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater., 2020, 10(32): 2001274. [13] SAND S C, RUPP J L M, YILDIZ B. A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries.Chem. Soc. Rev., 2025, 54(1): 178. [14] JANEK J, ZEIER W G.A solid future for battery development.Nat. Energy, 2016, 1: 24. [15] MANTHIRAM A, YU X W, WANG S F.Lithium battery chemistries enabled by solid-state electrolytes.Nat. Rev. Mater., 2017, 2(4): 16103. [16] CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev., 2020, 120(14): 6820. [17] YU T, YANG X, YANG R, et al. Progress and perspectives on typical inorganic solid-state electrolytes. J. Alloys Compd., 2021, 885: 161013. [18] LU P, XIA Y, SUN G, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes. Nat. Commun., 2023, 14(1): 4077. [19] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy., 2016, 1(4): 16030. [20] NIE X, HU J, LI C.Halide-based solid electrolytes: the history, progress, and challenges.Interdiscip. Mater., 2023, 2(3): 365. [21] WANG C, LIANG J, KIM J T, et al. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv., 2022, 8(36): eadc9516. [22] WANG Q, ZHOU Y, WANG X, et al. Designing lithium halide solid electrolytes. Nat. Commun., 2024, 15(1): 1050. [23] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater., 2018, 30(44): e1803075. [24] WEI Z, NAZAR L F, JANEK J.Emerging halide solid electrolytes for sodium solid-state batteries: structure, conductivity, paradigm of applications.Batteries Supercaps, 2024, 7(7): e202400005 [25] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy. Environ. Sci., 2020, 13(5): 1429. [26] TUO K, SUN C W, LIU S Q.Recent progress in and perspectives on emerging halide superionicconductors for all-solid-state batteries.Electrochem. Energy Rev., 2023, 6(1): 17. [27] HUANG L J, ZHANG L, BI J Y, et al. An insight into halide solid-state electrolytes: progress and modification strategies. Energy Mater. Adv., 2024, 5: 35632. [28] LIANG J, LI X, ADAIR K R, et al. Metal halide superionic conductors for all-solid-state batteries. Acc. Chem. Res., 2021, 54(4): 1023. [29] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett., 2022, 7(5): 1776. [30] KWAK H, LYOO J, PARK J, et al. Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Mater., 2023, 37: 47-54. [31] ZHAO T, SOBOLEV A N, SCHLEM R, et al. Synthesis-controlled cation solubility in solid sodium ion conductors Na2+xZr1-xInxCl6. ACS Appl. Energy Mater., 2023, 6(8): 4334. [32] SEBTI E, QI J, RICHARDSON P M, et al. Synthetic control of structure and conduction properties in Na-Y-Zr-Cl solid electrolytes. J. Mater. Chem. A, 2022, 10(40): 21565. [33] STEINER H-J, LUTZ H D.Neue schnelle Ionenleiter vom Typ M13M2Cl6 (M1=Li, Na, Ag; M2=In, Y).Z. Anorg. Allg. Chem., 1992, 613(7): 26. [34] SCHLEM R, BANIK A, ECKARDT M, et al. Na3-xEr1-xZrxCl6-a halide-based fast sodium-ion conductor with vacancy-driven ionic transpor. ACS Appl. Energy Mater., 2020, 3(10): 10164. [35] WU E A, BANERJEE S, TANG H, et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun., 2021, 12(1): 1256. [36] WU M, LIU X, LIU H, et al. Fluorinated amorphous halides with improved ionic conduction and stability for all-solid-state sodium-ion batteries. Nat. Commun., 2025, 16(1): 2808. [37] HU Y, FU J, XU J, et al. Superionic amorphous NaTaCl6 halide electrolyte for highly reversible all-solid-state Na-ion batteries. Matter, 2024, 7(3): 1018. [38] ZHAO T, SAMANTA B, DE IRUJO-LABALDE X M, et al. Sodium metal oxyhalides NaMOCl4(M=Nb, Ta) with high ionic conductivities. ACS Mater. Lett., 2024, 6(8): 3683. [39] LIN X, ZHANG S, YANG M, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries. Nat. Mater., 2024, 24(1): 83. [40] LIN X, ZHAO Y, WANG C, et al. A dual anion chemistry-based superionic glass enabling long-cycling all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed., 2023, 13: e202314181. [41] KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun., 2023, 14(1): 2459. [42] BAENZIGER N C.The crystal structure of NaAlCl4.Acta Cryst., 1951, 4(3): 216. [43] PARK J, SON J P, KO W, et al. NaAlCl4: new halide solid electrolyte for 3 V stable cost-effective all-solid-state Na-ion batteries. ACS Energy Lett., 2022, 7(10): 3293. [44] HAFNER M, BIANCHINI M.Exploring cationic substitutions in the solid electrolyte NaAlCl4 with density functional theory.J. Phys. Chem. C Nano. Interfaces, 2024, 128(47): 19978. [45] GOODYEAR J, ALI S A D, STEIGMANN G A. The crystal structure of Na2MnCl4.Acta Cryst., 1971, B27(8): 1672. [46] LOON C J J, IJDO D J W. The crystal structure of Na6MnCl8 and Na2Mn3Cl8 and some isostructural compounds.Acta Cryst., 1975, B31(3): 770. [47] VAN LOON C J J, VISSER D. Chlorides with the chrysoberyl structure: Na2CoCl4 and Na2ZnCl4.Acta Cryst., 1977, B33(1): 188. [48] LUTZ H D, WUSSOW K, KUSKE P.Ionic conductivity, structural, IR and raman spectroscopic data of olivine, Sr2PbO4, and Na2CuF4 type lithium and sodium chlorides Li2ZnCl4 and Na2MCl4 (M = Mg, Ti, Cr, Mn, Co, Zn, Cd).Z Naturforsch., 1987, 42b(11): 1379. [49] GUO H, HAFNER M, GRUNINGER H, et al. Structure and ionic conductivity of halide solid electrolytes based on NaAlCl4 and Na2ZnCl4. Adv. Sci., 2025, 12(30): e07224. [50] SADOWAY D R, FLENGAS S N.The synthesis and properties of the hexachloroniobates and hexachlorotantalates of Na, K, Rb, and Cs.Can. J. Chem., 1978, 56(15): 2013. [51] HENKE H.Zur kristallchemischen einordnung von NaSbCl6, NaNbCl6 und NaTaCl6.Z. Krist.-cryst. Mater., 1992, 198(1/2): 1. [52] LI R, XU K Q, WEN S H, et al. A sodium superionic chloride electrolyte driven by paddle wheel mechanism for solid state batteries. Nat. Commun., 2025, 16(1): 6633. [53] KIPOUROS G J, FLENGAS S N.Equilibrium decomposition pressures of the compounds Na2ZrCl6 and Na2HfCl6.Can. J. Chem., 1981, 59(6): 990. [54] ZHAO T, SOBOLEV A N, MARTINEZ DE IRUJO LABALDE X, et al. On the influence of the coherence length on the ionic conductivity in mechanochemically synthesized sodium-conducting halides, Na3-xIn1-xZrxCl6. J. Mater. Chem. A, 2024, 12(12): 7015. [55] ZHOU L, ZHANG S, LI W, et al. Amorphous-nanocrystalline fluorinated halide electrolytes with high ionic conductivity and high-voltage stability. J. Am. Chem. Soc., 2025, 147(18): 15136. [56] PARK D, KIM K, CHUN G H, et al. Materials design of sodium chloride solid electrolytes Na3MCl6 for all-solid-state sodium-ion batteries. J. Mater. Chem. A, 2021, 9(40): 23037. [57] YU S, KIM K, WOOD B C, et al. Structural design strategies for superionic sodium halide solid electrolytes. J. Mater. Chem. A, 2022, 10(45): 24301. [58] NIU X, DOU X, FU C, et al. Sodium halide solid state electrolyte of Na3YBr6 with low activation energy. RSC Adv., 2024, 14(21): 14716. [59] RIDLEY P, NGUYEN L H B, SEBTI E, et al. Amorphous and nanocrystalline halide solid electrolytes with enhanced sodium-ion conductivity. Matter, 2024, 7(2): 485. [60] LUO J D, ZHANG Y, CHENG X, et al. Halide superionic conductors with non-close-packed anion frameworks. Angew. Chem. Int. Ed., 2024, 63(17): e202400424. [61] LISSNER F, KRÄMER K, SCHLEID T, et al. Die Chloride Na3xM2-xCl6(M=La, Sm) and NaM2Cl6, 1994, 620(3): 444. [62] WICKLEDER M S, MEYER G.Neue derivate des UCl3-typs: die chloride and bromide A(SrSm)Cl6, A(SrEu)Cl6 und A(BaLa)X6 (A=Na, Ag; X=Cl, Br).Z. Anorg. Allg. Chem., 1999, 624(10): 1577. [63] FU C, LI Y, XU W, et al. LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries. Nat. Commun., 2024, 15(1): 5646. [64] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat. Energy, 2023, 8(11): 1221. [65] MOTOHASHI K, TSUKASAKI H, MORI S, et al. Fast sodium-ion conducting amorphous oxychloride embedding nanoparticles. Chem. Mater., 2024, 36(19): 9914. [66] ZHOU L, BAZAK J D, LI C, et al. 4 V Na solid state batteries enabled by a scalable sodium metal oxyhalide solid electrolyte. ACS Energy Lett., 2024, 9(8): 4093. [67] LIANG C C.Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes.J. Electrochem. Soc., 1973, 120(10): 1289. [68] MERCIER R, MALUGANI J P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics, 1981, 5: 663. [69] FU J, WANG S, WU D, et al. Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors. Adv. Mater., 2024, 36(3): e2308012. [70] YU Q, HU J, XU Y, et al. Mesoporous enhanced heterostructured halide solid electrolytes with high air stability and high abundance for sustainable sodium metal batteries. Angew. Chem. Int. Ed., 2025, 64(26): e202425503. [71] QIE Y, WANG S, FU S, et al. Yttrium-sodium halides as promising solid-state electrolytes with high ionic conductivity and stability for Na-ion batteries. J. Phys. Chem. Lett., 2020, 11(9): 3376. [72] PARK J, HAN D, SON J P, et al. Extending the electrochemical window of Na+ halide nanocomposite solid electrolytes for 5 V-class all-solid-state Na-ion batteries. ACS Energy Lett., 2024, 9(5): 2222. [73] GOODWIN L E, ZIEGLER M, TILL P, et al. Halide and sulfide electrolytes in cathode composites for sodium all-solid-state batteries and their stability. ACS Appl. Mater. Interfaces, 2024, 16(15): 19792. [74] DEYSHER G, CHEN Y T, SAYAHPOUR B, et al. Evaluating electrolyte-anode interface stability in sodium all-solid-state batteries. ACS Appl. Mater. Interfaces, 2022, 14(42): 47706. [75] ZHANG J, YU Z, ZHU Y, et al. Configuration design and interface reconstruction to realize the superior high-rate performance for sodium layered oxide cathodes. Adv. Energy Mater., 2025, 15(23). [76] ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater., 2017, 7(4): 1601196. [77] DONG Z L, GAN Y, MARTINS V, et al. Novel sulfide-chloride solid-state electrolytes with tunable anion ratio for highly stable solid-state sodium-ion batteries. Adv. Mater., 2025, 37(30): e2503107. [78] XU J, LI Y, LU P, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv. Energy Mater., 2021, 12(2): 2102348. |
[1] | 余升阳, 苏海军, 姜浩, 余明辉, 姚佳彤, 杨培鑫. 激光增材制造超高温氧化物陶瓷孔隙缺陷形成及抑制研究进展[J]. 无机材料学报, 2025, 40(9): 944-956. |
[2] | 文伸豪, 彭德招, 林喆与, 郭霞, 黄培鑫, 章志珍. 基于LLZTO电解质的固态锂金属电池负极界面调控[J]. 无机材料学报, 2025, 40(9): 1013-1021. |
[3] | 刘江平, 管鑫, 唐振杰, 朱文杰, 罗永明. 含氮挥发性有机化合物催化氧化的研究进展[J]. 无机材料学报, 2025, 40(9): 933-943. |
[4] | 肖晓琳, 王玉祥, 谷佩洋, 朱圳荣, 孙勇. 二维无机材料调控病损皮肤组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 860-870. |
[5] | 马景阁, 吴成铁. 无机生物材料用于毛囊和毛发再生的研究[J]. 无机材料学报, 2025, 40(8): 901-910. |
[6] | 张洪健, 赵梓壹, 吴成铁. 无机生物材料调控神经细胞功能及神经化组织再生的研究进展[J]. 无机材料学报, 2025, 40(8): 849-859. |
[7] | 艾敏慧, 雷波. 微纳米生物活性玻璃: 功能化设计与血管化皮肤再生[J]. 无机材料学报, 2025, 40(8): 921-932. |
[8] | 王宇彤, 常江, 徐合, 吴成铁. 硅酸盐生物陶瓷/玻璃促创面修复的研究进展:作用、机制和应用方式[J]. 无机材料学报, 2025, 40(8): 911-920. |
[9] | 马文平, 韩雅卉, 吴成铁, 吕宏旭. 无机活性材料在类器官研究领域的应用[J]. 无机材料学报, 2025, 40(8): 888-900. |
[10] | 罗晓民, 乔志龙, 刘颍, 杨晨, 常江. 无机生物活性材料调控心肌再生的研究进展[J]. 无机材料学报, 2025, 40(8): 871-887. |
[11] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[12] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[13] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[14] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[15] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||