无机材料学报

• 综述 •    

钠氯化物固态电解质研究进展

彭德招1,2, 李瑞1,2, 王文鸿1,2, 王梓瑞1,2, 章志珍1,2   

  1. 1.中山大学·深圳,材料学院,深圳 518107;
    2.中山大学,材料学院,广州 510006
  • 收稿日期:2025-07-19 修回日期:2025-09-17
  • 通讯作者: 章志珍,副教授. E-mail:zhangzhzh28@mail.sysu.edu.cn
  • 作者简介:彭德招, 博士研究生. E-mail: pengdzh5@mail2.sysu.edu.cn
  • 基金资助:
    深圳市优秀科技创新人才培养项目(RCYX20221008092929074); 广东省科技计划项目(2023B0909060004); 深圳市面上项目(JCYJ20220530150200001); 广东省“珠江人才计划”青年拔尖人才项目(2021QN02L210); 国家自然科学基金区域创新发展联合项目(U22A20439)

Research Progress of Sodium Chloride Solid Electrolytes

PENG Dezhao1,2, LI Rui1,2, WANG Wenhong1,2, WANG Zirui1,2, ZHANG Zhizhen1,2   

  1. 1. School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
    2. School of Materials, Sun Yat-sen University, Guangzhou 510006, China
  • Received:2025-07-19 Revised:2025-09-17
  • Contact: ZHANG Zhizhen, Associate Professor. E-mail: zhangzhzh28@mail.sysu.edu.cn
  • About author:PENG Dezhao, PhD candidate. E-mail: pengdzh5@mail2.sysu.edu.cn
  • Supported by:
    Shenzhen Science and Technology Program (RCYX20221008092929074); Guangdong S&T Program (2023B0909060004); Shenzhen Fundamental Research Program (JCYJ20220530150200001); Zhujiang Talent Program of Guangdong Province(2021QN02L210); National Natural Science Foundation of China (U22A20439)

摘要: 钠离子电池具有成本低廉、钠资源丰富等优势,是锂离子电池的潜在替代技术。开发兼具高离子电导率与宽电化学窗口的钠离子固态电解质对推动钠离子固态电池的发展与应用具有重要意义。在诸多固态电解质中,氯化物电解质因具有高离子电导率、高氧化电位以及良好的塑性,近年来受到广泛关注。本文系统梳理了钠基氯化物固态电解质的发展脉络,重点总结了固态电解质元素组成、晶体结构与离子电导率之间的内在关联,并阐述通过阳/阴离子掺杂、非晶化及异质结构复合等策略调控电解质离子输运性质的作用机制。此外,本文讨论了钠基氯化物固态电解质的电化学稳定性及其与正极材料的化学/电化学兼容性,总结了其与钠金属负极的界面失效机制,并简要概述了氯化物基全固态电池中的研究进展。最后,本文凝练了氯化物基全固态钠离子电池在实际应用中面临的关键挑战,并对未来研究方向进行展望,为该类材料在能源转换与储存领域中的实际应用提供指导。

关键词: 固态电解质, 离子电导率, 氯化物, 离子迁移, 固态电池, 综述

Abstract: Sodium-ion batteries are widely considered a promising alternative to lithium-ion batteries owing to their low cost and the abundance of sodium resources. Advancing the development and application of all-solid-state sodium-ion batteries (ASSBs) critically depends on the availability of solid electrolytes that combine high ionic conductivity with a wide electrochemical stability window. Among various solid electrolytes, chloride solid electrolytes have attracted considerable attention in recent years due to their high ionic conductivity, high oxidation potential, and favorable deformability. This review provides a comprehensive overview of the development of sodium chloride solid electrolytes, emphasizing the interplay between chemical composition, crystal structure, and ionic conductivity, and further examining how modification approaches—including cation/anion doping, amorphization, and heterostructure engineering—govern their ionic transport behavior. In addition, this review also examines the electrochemical stability of sodium chloride solid electrolytes and their chemical and electrochemical compatibility with common cathode materials, which are crucial for enabling practical cell configurations. The interfacial degradation mechanisms that arise at the interface with sodium metal anode are also discussed, and recent advances in chloride-based ASSBs are concisely reviewed. Finally, the key challenges that hinder the practical deployment of chloride-based ASSBs are highlighted, and prospective research directions are proposed, which are expected to provide valuable insights to guide the future application of chloride solid electrolytes in energy conversion and storage technologies.

Key words: solid electrolyte, ionic conductivity, chloride, ion transport, solid-state battery, review

中图分类号: