[1] |
The National Renewable Energy Laboratory. Best research-cell efficiency chart. (2025-01-21) [2025-03-12]. .
|
[2] |
HAILEGNAW B, DEMCHYSHYN S, PUTZ C, et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy autonomous drones. Nature Energy, 2024, 9: 677.
|
[3] |
WU J, LIU Z, YANG Y, et al. Regulating precursor viscosity with inert solvent additives for efficient blade-coated perovskite solar cells. Small Methods, 2025, 2500129.
|
[4] |
ZHANG Z, CHEN W, JIANG X, et al. Suppression of phase segregation in wide bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nature Energy, 2024, 9: 592.
|
[5] |
LIANG L, NAN Z, LI Y, et al. Formation dynamics of thermally stable 1D/3D perovskite interfaces for high-performance pho-tovoltaics. Advanced Materials, 2025, 37(8): 2413841.
|
[6] |
WANG K, ZHENG L Y, HOU Y C, et al. Overcoming Shockley-Queisser limit using halide perovskite platform? Joule, 2022, 6(4): 756.
|
[7] |
ALLEN T G, BULLOCK J, YANG X, et al. Passivating contacts for crystalline silicon solar cells. Nature Energy, 2019, 4: 914.
|
[8] |
XIE L, DU S, LI J, et al. Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy & Environment Science, 2023, 16(11): 5423.
|
[9] |
WANG S, TAN L, ZHOU J, et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells. Joule, 2022, 6(6): 1344.
|
[10] |
ZHU H, WU S, YAO J, et al. An effective surface modification strategy with high reproducibility for simultaneously improving efficiency and stability of inverted MA-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(37): 21476.
|
[11] |
LI X, GAO S, WU X, et al. Bifunctional ligand-induced preferred crystal orientation enables highly efficient perovskite solar cells. Joule, 2024, 8(11): 3169.
|
[12] |
ZHANG X, SHANG C, WANG C, et al. Preferred crystallographic orientation via solution bathing for high-performance inverted perovskite photovoltaics. Advanced Functional Materials, 2024, 34(46): 2407732.
|
[13] |
HUANG S, QIAN C, LIU X, et al. A review on flexible solar cells. Science China Materials, 2024, 67(9): 2717.
|
[14] |
FAN Y, CHEN H, LIU X, et al. Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites. Journal of the American Chemical Society, 2023, 145 (14): 8209.
|
[15] |
LEI Y S, CHEN Y, ZHANG R, et al. A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583: 790.
|
[16] |
XU X, DU Q, KANG H, et al. Uniform molecular adsorption energy-driven homogeneous crystallization and dual-interface modification for high efficiency and thermal stability in inverted perovskite solar cells. Advanced Functional Materials, 2024, 34(44): 2408512.
|
[17] |
LIU H, JIN G, WANG J, et al. Quantum dots mediated crystallization enhancement in two-step processed perovskite solar cells. Nano-Micro Letters, 2025, 17: 169.
|
[18] |
LI S, XIAO Y, SU R, et al. Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature, 2024, 635: 874.
|
[19] |
PENG J, WALTER D, REN Y, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371(6527): 390.
|
[20] |
KANG D, PARK N. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31(34): 1805214.
|
[21] |
ZHAO W, XU J, HE K, et al. A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Letters, 2021, 13: 169.
|
[22] |
WANG C, GU J, LI J, et al. Two-dimensional (n=1) ferroelectric film solar cells. National Science Review, 2023, 10(7): nwad061.
|
[23] |
LIAO X, JIA X, LI W, et al. Methylammonium-free, high-efficiency, and stable all-perovskite tandem solar cells enabled by multifunctional rubidium acetate. Nature Communications, 2025, 16: 1164.
|