[1] |
PEI Z F, LEI H L, CHENG L. Bioactive inorganic nanomaterials for cancer theranostics. Chemical Society Reviews, 2023, 52(6):2031.
DOI
PMID
|
[2] |
IELO I, CALABRESE G, DE LUCA G, et al. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. International Journal of Molecular Sciences, 2022, 23(17): 25.
|
[3] |
YANG S B, LI Y S. Fluorescent hybrid silica nanoparticles and their biomedical applications. WIREs Nanomedicine and Nanobiotechnology, 2020, 12(3): 20.
|
[4] |
ARCOS D, VALLET-REGÍ M. Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 2020, 8(9): 1781.
|
[5] |
WU C T, CHANG J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. Journal of Controlled Release, 2014, 193: 282.
|
[6] |
鞠银燕, 陈晓峰, 王迎军. 生物活性玻璃多孔材料的制备及性能研究. 硅酸盐通报, 2005(3): 9.
|
[7] |
VALLET-REGÍ M, COLILLA M, IZQUIERDO-BARBA I, et al. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules, 2018, 23: 47.
|
[8] |
CHEN F, GOEL S, VALDOVINOS H F, et al. In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano, 2015, 9(8): 7950.
|
[9] |
CHEN L, DENG C J, LI J Y, et al. 3D printing of a lithium- calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 2019, 196: 138.
|
[10] |
WANG X Y, ZHANG M, MA J G, et al. 3D printing of cell-container-like scaffolds for multicell tissue engineering. Engineering, 2020, 6(11): 1276.
|
[11] |
TANG Z R, LI X F, TAN Y F, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regenerative Biomaterials, 2018, 5(1): 43.
|
[12] |
WANG Y J. Bioadaptability: an innovative concept for biomaterials. Journal of Materials Science & Technology, 2016, 32(9): 801.
|
[13] |
LI Y L, XIAO Y, LIU C S. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chemical Reviews, 2017, 117(5): 4376.
|
[14] |
ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 2017, 10(4): 104.
|
[15] |
CHEN R, WANG J, LIU C S. Biomaterials act as enhancers of growth factors in bone regeneration. Advanced Functional Materials, 2016, 26(48): 8810.
|
[16] |
NIU H Y, MA Y F, WU G Y, et al. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials, 2019, 216: 17.
|
[17] |
DAI K, GENG Z, ZHANG W C, et al. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. National Science Review, 2024, 11(5): 15.
|
[18] |
王靖, 刘昌胜. 材料生物学——骨修复材料的机遇与挑战. 中国材料进展, 2019, 38(4): 359.
|
[19] |
WANG Y, XIE F R, HE Z R, et al. Senescence-targeted and NAD+-dependent SIRT1-activated nanoplatform to counteract stem cell senescence for promoting aged bone regeneration. Small, 2024, 20(12): 16.
|
[20] |
HE Z R, SUN C H, MA Y F, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel. Advanced Materials, 2024, 36(9): 15.
|
[21] |
ZHENG J Q, LU X, LU Y J, et al. Functional bioadaptability in medical bioceramics: biological mechanism and application. Journal of Inorganic Materials, 2024, 39(1): 1.
|
[22] |
LIU X, MIAO Y L, LIANG H F, et al. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone-implant interface in vivo. Bioactive Materials, 2022, 12: 120.
|
[23] |
LU Q J, DIAO J J, WANG Y Q, et al. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioactive Materials, 2023, 26: 413.
|
[24] |
王晓亚, 常江. 生物陶瓷在组织工程中的应用. 生命科学, 2020, 32(3): 257.
|
[25] |
ZHANG M, QIN C, WANG Y F, et al. 3D printing of tree-like scaffolds for innervated bone regeneration. Additive Manufacturing, 2022, 54: 10.
|
[26] |
ZHANG H J, ZHANG M, ZHAI D, et al. Polyhedron-like biomaterials for innervated and vascularized bone regeneration. Advanced Materials, 2023, 35(42): 14.
|
[27] |
ZHANG H J, QIN C, ZHANG M, et al. Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs. Nano Today, 2022, 46: 15.
|
[28] |
ZHANG H J, MA W P, MA H S, et al. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Advanced Healthcare Materials, 2022, 11(10): 13.
|
[29] |
ZHANG H J, QIN C, SHI Z, et al. Bioprinting of inorganic- biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. National Science Review, 2024, 11(4): 17.
|
[30] |
TANG L, ZHANG A N, ZHANG Z Y, et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Communications, 2022, 42(2): 141.
|
[31] |
WANG X W, ZHONG X Y, LI J X, et al. Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021, 50(15): 8669.
|
[32] |
SONG G S, HAO J L, LIANG C, et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angewandte Chemie International Edition, 2016, 55(6):2122.
|
[33] |
YANG Y, WU H, LIU B, et al. Tumor microenvironment- responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Advanced Drug Delivery Reviews, 2021, 179: 23.
|
[34] |
ZHANG A M, XIAO Z S, LIU Q F, et al. CaCO3-encapuslated microspheres for enhanced transhepatic arterial embolization treatment of hepatocellular carcinoma. Advanced Healthcare Materials, 2021, 10(19): 13.
|
[35] |
WANG D, ZHANG L, YANG W H, et al. Arginine-loaded nano-calcium-phosphate-stabilized lipiodol pickering emulsions potentiates transarterial embolization-immunotherapy. Advanced Science, 2024, 12(6): 2410484.
|
[36] |
LI Q F, CHAO Y, LIU B, et al. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials, 2022, 291: 13.
|
[37] |
GONG F, XU J C, LIU B, et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem, 2022, 8(1): 268.
|
[38] |
YANG N L, GONG F, LIU B, et al. Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth. Nature Communications, 2022, 13: 12.
|
[39] |
DONG X L, SUN Y, LI Y Y, et al. Synergistic combination of bioactive hydroxyapatite nanoparticles and the chemotherapeutic doxorubicin to overcome tumor multidrug resistance. Small, 2021, 17(18): 12.
|
[40] |
DONG X L, ZANG C Y, SUN Y, et al. Hydroxyapatite nanoparticles induced calcium overload-initiated cancer cell-specific apoptosis through inhibition of PMCA and activation of calpain. Journal of Materials Chemistry B, 2023, 11(32): 7609.
|
[41] |
MA X Y, CHEN Y Y, QIAN J C, et al. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Materials Chemistry and Physics, 2016, 183: 220.
|
[42] |
SHEN T, WANG H, ZHANG S Q, et al. Safe, simple and multifunctional hydroxyapatite nanoparticles for efficient overcoming of tumor multidrug resistance. Applied Materials Today, 2024, 40: 15.
|
[43] |
SUN Y, CHEN Y Y, MA X Y, et al. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Applied Materials & Interfaces, 2016, 8(39): 25680.
|
[44] |
CHEN S Y, XING Z Y, GENG M Y, et al. Macrophage fusion event as one prerequisite for inorganic nanoparticle-induced antitumor response. Science Advances, 2023, 9(29): 14.
|
[45] |
WANG R Q, HUA Y C, WU H F, et al. Hydroxyapatite nanoparticles promote TLR4 agonist-mediated anti-tumor immunity through synergically enhanced macrophage polarization. Acta Biomaterialia, 2023, 164: 626.
|
[46] |
ZHAO H, WU C H, GAO D, et al. Antitumor effect by hydroxyapatite nanospheres: activation of mitochondria dependent apoptosis and negative regulation of phosphatidylinositol-3- kinase/protein kinase B pathway. ACS Nano, 2018, 12(8): 7838.
|
[47] |
LUTHER D C, HUANG R, JEON T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Drug Delivery Reviews, 2020, 156: 188.
|
[48] |
ANSELMO A C, MITRAGOTRI S. A review of clinical translation of inorganic nanoparticles. AAPS Journal, 2015, 17(5): 1041.
|
[49] |
LI X L, JIANG C, JIA X L, et al. Dual "unlocking" strategy to overcome inefficient nanomedicine delivery and tumor hypoxia for enhanced photodynamic-immunotherapy. Advanced Healthcare Materials, 2023, 12(6): 9.
|
[50] |
NIU D C, LIU Z J, LI Y S, et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Advanced Materials, 2014, 26(29): 4947.
|
[51] |
SHEN L Y, PAN S, NIU D C, et al. Facile synthesis of organosilica- capped mesoporous silica nanocarriers with selective redox- triggered drug release properties for safe tumor chemotherapy. Biomaterials Science, 2019, 7(5): 1825.
|
[52] |
QIU Y W, LUO Y J, QIN Y C, et al. Efficient synthesis of multi-responsive MSN sensitive to ROS, pH and temperature with significant anticancer effects. Materials Letters, 2024, 365: 5.
|
[53] |
LIU H M, DU Y Y, ST-PIERRE J P, et al. Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science Advances, 2020, 6(13): 14.
|
[54] |
LIU X L, JIANG S T, JIANG T, et al. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance. Science Advances, 2024, 10(42): 18.
|