无机材料学报 ›› 2025, Vol. 40 ›› Issue (12): 1356-1364.DOI: 10.15541/jim20240535

• 专栏:高温燃料电池关键材料(客座编辑:凌意瀚) • 上一篇    下一篇

质子传导型固体氧化物燃料电池BaZr0.1Ce0.7Y0.1Yb0.1O3电解质的氟化研究

姜玥宏(), 宋云峰(), 张磊磊(), 马季, 宋昭远, 龙文   

  1. 辽宁石油化工大学 理学院, 抚顺 113001
  • 收稿日期:2024-12-24 修回日期:2025-03-18 出版日期:2025-12-20 网络出版日期:2025-04-09
  • 通讯作者: 宋云峰, 实验师. E-mail: yunfs@lnpu.edu.cn;
    张磊磊, 教授. E-mail: petuzll@163.com
  • 作者简介:姜玥宏(1994-), 女, 硕士研究生. E-mail: jyh_940315@163.com
  • 基金资助:
    国家自然科学基金(62105132);辽宁省教育厅基本科研项目(LJ212410148055);辽宁省教育厅基本科研项目(LJ212410148058)

Fluorination of BaZr0.1Ce0.7Y0.1Yb0.1O3 as Electrolyte Material for Proton-conducting Solid Oxide Fuel Cell

JIANG Yuehong(), SONG Yunfeng(), ZHANG Leilei(), MA Ji, SONG Zhaoyuan, LONG Wen   

  1. College of Science, Liaoning Petrochemical University, Fushun 113001, China
  • Received:2024-12-24 Revised:2025-03-18 Published:2025-12-20 Online:2025-04-09
  • Contact: SONG Yunfeng, lecturer. E-mail: yunfs@lnpu.edu.cn;
    ZHANG Leilei, professor. E-mail: petuzll@163.com
  • About author:JIANG Yuehong (1994-), female, Master candidate. E-mail: jyh_940315@163.com
  • Supported by:
    National Natural Science Foundation of China(62105132);Scientific Research Fund Project of Education Department of Liaoning Province(LJ212410148055);Scientific Research Fund Project of Education Department of Liaoning Province(LJ212410148058)

摘要:

质子传导型固体氧化物燃料电池(H+-SOFC)因温度依赖性弱和能量转换效率高而备受关注。本工作通过氟化诱导提高了电解质BaZr0.1Ce0.7Y0.1Yb0.1O3(BZCYYb)的质子传导性。在450~800 ℃温区, 氟化后的BaZr0.1Ce0.7Y0.1Yb0.1O2.9F0.1 (BZCYYbF)钙钛矿在干氢气中的电导率(σ)为4.59×10-3~2.14×10-2 S/cm, 高于未氟化BZCYYb电解质的电导率(σ=3.99×10-3~1.86×10-2 S/cm)。电解质氟化可以明显降低阳极对氢氧化反应的极化阻抗, 700 ℃条件下从氟化前的2.50 Ω·cm2降低到1.94 Ω·cm2, 300 μm厚电解质支撑单电池(BSCN|电解质|LSFMN)的总阻抗从氟化前的1.54 Ω·cm2降低到氟化后的1.47 Ω·cm2。因此, 电解质氟化的单电池输出功率明显高于电解质未氟化的单电池。700 ℃时, 氟化电解质支撑单电池的最大输出功率密度Pmax为172 mW·cm-2, 明显高于未氟化电解质支撑单电池(Pmax=144 mW·cm-2)。追本溯源, 这是由于电解质氟化不但提高了电解质质子传导能力, 而且强化了阳极侧三相界面对氢燃料的吸附/解离和扩散速率。综上, 氟化能明显改善BZCYYb电解质的质子传导能力, 有助于提升H+-SOFC的电化学性能。

关键词: 质子传导型固体氧化物燃料电池, 质子导电电解质, 氟化, 导电性, 电化学性能

Abstract:

Proton-conducting solid oxide fuel cells (H+-SOFC) have gained great attention due to weak temperature dependence and high energy conversion efficiency. However, how to improve their proton conductivity still remains an open problem. In this work, a fluorination strategy based on the BaZr0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte was proposed to improve the proton conductivity. It is found that the conductivity (σ) of the fluorinated BaZr0.1Ce0.7Y0.1Yb0.1O2.9F0.1 (BZCYYbF) is 4.59×10-3-2.14×10-2 S/cm at 450-800 ℃ in dry H2, higher than that of the primitive BZCYYb electrolyte (σ=3.99×10-3-1.86×10-2 S/cm). The electrolyte fluorination significantly reduces anode polarization resistance for hydrogen oxidation reaction from 2.50 Ω·cm2 to 1.94 Ω·cm2, and total resistance of the single cell with 300-μm-thick electrolyte supporting from 1.54 Ω·cm2 to 1.47 Ω·cm2. Therefore, the BZCYYbF single cell shows much higher maximum power density (172 mW·cm-2) than the BZCYYb single cell (144 mW·cm-2) at 700 ℃. This result is attributed to the fact that the electrolyte fluorination not only improves the proton conduction capacity but also enhances the rates of H2 diffusion and adsorption/dissociation on the anode sides. In conclusion, the fluorination of BZCYYb electrolyte can significantly improve its proton conductivity and thereby contribute to superior electrochemical performance of H+-SOFC.

Key words: proton-conducting solid oxide fuel cell, proton conducting electrolyte, fluorination, conductivity, electrochemical performance

中图分类号: