[1] |
SHARAF O Z, ORHAN M F. An overview of fuel cell technology: fundamentals and applications. Renewable & Sustainable Energy Reviews, 2014, 32: 810-853.
|
[2] |
LI G, GOU Y, QIAO J, et al. Recent progress of tubular solid oxide fuel cell: from materials to applications. Journal of Power Sources, 2020, 477: 228693.
DOI
URL
|
[3] |
ZHOU Y C, YE X F, WANG S R. All symmetrical metal supported solid oxide fuel cells. Journal of Inorganic Materials, 2016, 31(7): 769-772.
DOI
URL
|
[4] |
YANG Y, TIAN D, DING Y Z, et al. Improved performance of symmetrical solid oxide fuel cells with redox-reversible Pr0.6Sr0.4Co0.2Fe0.8O3-δ electrodes. Journal of Inorganic Materials, 2017, 32(3): 235-240.
DOI
URL
|
[5] |
LIM D K, GUK J G, CHOI H S, et al. Measurement of partial conductivity of 8YSZ by Hebb-Wagner polarization method. Journal of the Korean Ceramic Society, 2015, 52(5): 299-303.
DOI
URL
|
[6] |
MOMENZADEH L, BELOVA I V, MURCH G E. Analysis of thermotransport and thermal and ionic conductivity in doped lanthanum gallate (LSGM) using molecular dynamics. Solid State Ionics, 2022, 377: 115881.
DOI
URL
|
[7] |
GARCIA-GARCIA F J, TANG Y, GOTOR F J, et al. Development by mechanochemistry of La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte for SOFCs. Materials, 2020, 13(6): 1366.
DOI
URL
|
[8] |
GESTEL T V, SEBOLD D, BUCHKREMER H P. Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs. Journal of the European Ceramic Society, 2015, 35(5): 1505-1515.
DOI
URL
|
[9] |
ZHANG L, CHEN G, DAI R, et al. A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells. Journal of Power Sources, 2021, 492: 229630.
DOI
URL
|
[10] |
MORALES M, ROA J J, TARTAJ J, et al. A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: from materials processing to electrical and thermo-mechanical properties. Journal of the European Ceramic Society, 2016, 36(1): 1-16.
DOI
URL
|
[11] |
SANG B H, CHO Y H, JI H I, et al. Low-temperature sintering and electrical properties of strontium-and magnesium-doped lanthanum gallate with V2O5 additive. Journal of Power Sources, 2011, 196(6): 2971-2978.
DOI
URL
|
[12] |
WANG Y, ZHOU D F, CHEN L, et al. Improvement in the sintering and electrical properties of strontium- and magnesium- doped lanthanum gallate by MoO3 dopant. Journal of Alloys and Compounds, 2017, 710: 748-755.
DOI
URL
|
[13] |
JIN S Y, LEE S, JI H Y, et al. Fe doping effects on phase stability and conductivity of La0.75Sr0.25Ga0.8Mg0.2O3-delta. Journal of Power Sources, 2009, 193(2): 593-597.
DOI
URL
|
[14] |
HA S B, CHO Y H, KANG Y C, et al. Effect of oxide additives on the sintering behavior and electrical properties of strontium- and magnesium-doped lanthanum gallate. Journal of the European Ceramic Society, 2010, 30(12): 2593-2601.
DOI
URL
|
[15] |
ZHU T, LIN Y, YANG Z, et al. Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells. Journal of Power Sources, 2014, 261(1): 255-263.
DOI
URL
|
[16] |
SARIBOĞA V, ÖZDEMIR H, FARUK ÖKSÜZÖMER M A. Cellulose templating method for the preparation of La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) solid oxide electrolyte. Journal of the European Ceramic Society, 2013, 33(8): 1435-1446.
DOI
URL
|
[17] |
ZHANG Q, LIU W J, WANG J, et al. Processing of perovskite La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte by glycine-nitrate combustion method. International Journal of Hydrogen Energy, 2021, 46(61): 31362-31369.
DOI
URL
|
[18] |
HUANG K, GOODENOUGH J B. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. Journal of Alloys & Compounds, 2000, 303: 454-464.
|