无机材料学报 ›› 2021, Vol. 36 ›› Issue (2): 140-151.DOI: 10.15541/jim20200073 CSTR: 32189.14.10.15541/jim20200073
所属专题: 电致变色材料与器件; 功能材料论文精选(2021); 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• 专栏: 电致变色材料与器件(特邀编辑:刁训刚, 王金敏) • 上一篇 下一篇
收稿日期:
2020-02-16
修回日期:
2020-05-05
出版日期:
2021-02-20
网络出版日期:
2020-08-01
通讯作者:
汪宏, 教授. E-mail: wangh6@sustech.edu.cn作者简介:
方华靖(1989-), 男, 副教授. E-mail: fanghj@xjtu.edu.cn
基金资助:
FANG Huajing1(), ZHAO Zetian1, WU Wenting1, WANG Hong2(
)
Received:
2020-02-16
Revised:
2020-05-05
Published:
2021-02-20
Online:
2020-08-01
About author:
FANG Huajing(1989-), male, associate professor. E-mail: fanghj@xjtu.edu.cn
Supported by:
摘要:
电致变色材料是一类重要的光电功能材料, 可以随周期性调整的电压改变颜色。这种可控的光学吸收率和透过率的调制在智能窗户、电致变色显示和防眩光后视镜等应用场合大显身手。近年来电致变色技术发展迅速, 但当前的研究大多集中在传统刚性电致变色器件, 通常以氧化铟锡(ITO)等导电玻璃为基底。这些刚性变色器件存在厚度大、共型性差、机械强度低、成本高等不可忽视的问题, 阻碍了电致变色技术及其商业化的发展。伴随着开发可穿戴设备和电子皮肤等其他未来技术的热潮, 柔性电致变色器件因其可折叠性、可穿戴性甚至可嵌入性而备受关注, 已跻身成为电致变色领域的研究热点。本综述从制备柔性电致变色器件的材料出发, 系统地概述了无机、有机、无机/有机复合及其他新型柔性电致变色器件最新进展和趋势, 着重介绍了可拉伸电致变色器件的国内外研究进展。同时讨论了现阶段柔性电致变色器件在性能提升和实际应用等方面遇到的挑战, 以及国内外研究者采取的应对措施。最后明确了柔性电致变色器件制备与提升性能的关键, 并对未来的发展趋势做出展望。
中图分类号:
方华靖, 赵泽天, 武文婷, 汪宏. 柔性电致变色器件研究进展[J]. 无机材料学报, 2021, 36(2): 140-151.
FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 140-151.
图1 溶剂热法制备的W18O49纳米线与Ag NWs在PET基底上共组装得到柔性变色薄膜[4]
Fig. 1 W18O49 nanowires and Ag NWs by solvothermal preparation co-assembled on PET substrate to obtain flexible color-changing film[4] (a) Schematic illustration of the curved Ag and W18O49 NW film with electrochromic property; (b,c) The film attached on the curved surface of the beaker before (bleached state) and after (colored state) applying voltage; (d) In situ electrical resistance change of flexible electrochromic film after 0, 100, 200, 300, 500, and 1000 bending cycles; (e) Switching behaviors of the ECD after 0, 100, 200, 300, 400, 500, and 1000 bending cycles
Materials | Switching time/s | Coloration efficiency/(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 | 10.3/7.4 | 35.7 | 60 | 1000 | 12 | [4] |
WO3/Ag/WO3 | 11/10.5 | 136 | 53 | 3000 | 15 | [10] |
WO3 | 3.5/8.4 | 60.1 | 73.3 | 200 | 5 | [11] |
WO3-NiVOx | 6/5 | - | 42 | 8000 | 75 | [15] |
WO3 | 30 | 139 | 49 | 1000 | - | [16] |
WO3 | 9/19 | 58.95 | 89.7 | 300 | 2 | [17] |
MoO3 | 6.2/10.9 | 34.7 | 27.7 | 150 | 11 | [19] |
NiOx-WO3 | - | 20-35 | 60 | 125 | 36 | [22] |
WO3-ZnO | 6.2/2.8 | 80.6 | 68.2 | - | - | [23] |
Prussian blue -WO3 | <10 | - | 52.4 | 2250 | - | [28] |
表1 无机电致变色器件性能比较
Table 1 Performance comparison of inorganic FECD
Materials | Switching time/s | Coloration efficiency/(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 | 10.3/7.4 | 35.7 | 60 | 1000 | 12 | [4] |
WO3/Ag/WO3 | 11/10.5 | 136 | 53 | 3000 | 15 | [10] |
WO3 | 3.5/8.4 | 60.1 | 73.3 | 200 | 5 | [11] |
WO3-NiVOx | 6/5 | - | 42 | 8000 | 75 | [15] |
WO3 | 30 | 139 | 49 | 1000 | - | [16] |
WO3 | 9/19 | 58.95 | 89.7 | 300 | 2 | [17] |
MoO3 | 6.2/10.9 | 34.7 | 27.7 | 150 | 11 | [19] |
NiOx-WO3 | - | 20-35 | 60 | 125 | 36 | [22] |
WO3-ZnO | 6.2/2.8 | 80.6 | 68.2 | - | - | [23] |
Prussian blue -WO3 | <10 | - | 52.4 | 2250 | - | [28] |
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
PANI | 40/20 | 22.9 | 34 | 200 cycles | 6 | [34] |
PANI | 3.9/2.61 | 80.9 | 49 | 500 cycles | 10 | [35] |
PEDOT | 4.1/3.4 | - | 21 | 10000 cycles | 20 | [38] |
PEDOT: PSS | 4.6/2 | 429 | 45 | 4000 cycles | - | [39] |
ethyl viologen | 41/395 | 117.7 | 92.1 | 60000 s | 12.5 | [43] |
monoheptyl-viologen/diheptylviologen/diphenyl-viologen | 20/34 | 87.3 | 25 | 3600 s | 10 | [44] |
FeL | 3.6/7.3 | 299.8 | 41 | 250 cycles | - | [47] |
MEPE | 2/26 | 445 | 40.1 | - | 10 | [48] |
Poly[Ni(salen)]-type polymer | 157/145 | 130.4 | 88.7 | 3000 cycles | - | [49] |
表2 有机电致变色器件性能比较
Table 2 Performance comparison of organic FECD
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
PANI | 40/20 | 22.9 | 34 | 200 cycles | 6 | [34] |
PANI | 3.9/2.61 | 80.9 | 49 | 500 cycles | 10 | [35] |
PEDOT | 4.1/3.4 | - | 21 | 10000 cycles | 20 | [38] |
PEDOT: PSS | 4.6/2 | 429 | 45 | 4000 cycles | - | [39] |
ethyl viologen | 41/395 | 117.7 | 92.1 | 60000 s | 12.5 | [43] |
monoheptyl-viologen/diheptylviologen/diphenyl-viologen | 20/34 | 87.3 | 25 | 3600 s | 10 | [44] |
FeL | 3.6/7.3 | 299.8 | 41 | 250 cycles | - | [47] |
MEPE | 2/26 | 445 | 40.1 | - | 10 | [48] |
Poly[Ni(salen)]-type polymer | 157/145 | 130.4 | 88.7 | 3000 cycles | - | [49] |
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 NWs-PEDOT:PSS | 18.2/6.6 | 118.1 | 34.3 | - | 2.5 | [50] |
PEDOT:PSS-WO3 | 1.9/2.8 | 124.5 | 81.9 | 2000 | 20 | [52] |
WO3·2H2O-PEDOT | 4.4/2.6 | 180.2 | 63.1 | - | - | [53] |
Viologen-TiO2 | 8/6 | 226 | 53 | 1000 | - | [54] |
Ag NW/Ni(OH)2-PEIE/PEDOT:PSS | 0.3/0.6 | 517 | 30 | 100 | 1 | [55] |
表3 无机/有机复合电致变色器件性能比较
Table 3 Performance comparison of inorganic/organic composite FECD
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 NWs-PEDOT:PSS | 18.2/6.6 | 118.1 | 34.3 | - | 2.5 | [50] |
PEDOT:PSS-WO3 | 1.9/2.8 | 124.5 | 81.9 | 2000 | 20 | [52] |
WO3·2H2O-PEDOT | 4.4/2.6 | 180.2 | 63.1 | - | - | [53] |
Viologen-TiO2 | 8/6 | 226 | 53 | 1000 | - | [54] |
Ag NW/Ni(OH)2-PEIE/PEDOT:PSS | 0.3/0.6 | 517 | 30 | 100 | 1 | [55] |
图6 基于聚乙烯保鲜膜PE的ECD[61]
Fig. 6 ECD on household PE cling wrap[61] (a) Schematic illustration of the structure of the PE cling wrap-based hybrid EC film; (b) The color-changing e-skin (top) and PE cling wrap (bottom)
图7 可拉伸变色超级电容器[65]
Fig. 7 Stretchable electrochromic supercapacitor[65] T-S: Transparent stretchable; TSES: Transparent stretchable electrochromic supercapacitor
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
WO3/Ag/PEDOT:PSS/WO3 | 1.82/0.75 | - | 23 | 30000 s | 5 | [61] |
Heptyl Viologen | 32/43 | 31.82 | 74.5 | 100 cycles | 4.8 | [63] |
WO3 nanotube / PEDOT: PSS | <10 | 83.9 | 37.7 | 20000 cycles | 40 | [65] |
WO3-PANI | 4.1/2.1 | 75.5 | 40 | 500 cycles | 5 | [66] |
poly(3-methylthiophene)/Prussian blue | 1.3/1.2 | 201.6 | 17.8 | 180 cycles | 2.5 | [67] |
copolymer DFTPA-PI-MA | 5.3/12.2 | 82.2 | 60 | 100 cycles | - | [69] |
表4 拉伸电致变色器件性能比较
Table 4 Performance comparison of stretchable electrochromic devices
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
WO3/Ag/PEDOT:PSS/WO3 | 1.82/0.75 | - | 23 | 30000 s | 5 | [61] |
Heptyl Viologen | 32/43 | 31.82 | 74.5 | 100 cycles | 4.8 | [63] |
WO3 nanotube / PEDOT: PSS | <10 | 83.9 | 37.7 | 20000 cycles | 40 | [65] |
WO3-PANI | 4.1/2.1 | 75.5 | 40 | 500 cycles | 5 | [66] |
poly(3-methylthiophene)/Prussian blue | 1.3/1.2 | 201.6 | 17.8 | 180 cycles | 2.5 | [67] |
copolymer DFTPA-PI-MA | 5.3/12.2 | 82.2 | 60 | 100 cycles | - | [69] |
[1] |
GU H X, GUO C S, ZHANG S H, et al. Highly efficient, near-infrared and visible-light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano, 2018,12(1):559-567.
URL PMID |
[2] | FANG H J, ZHENG P Y, MA R, et al. Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Materials Horizons, 2018,5(5):1000-1007. |
[3] | JIA H X, CAO X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524. |
[4] |
WANG J L, LU Y R, LI H H, et al. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc., 2017,139(29):9921-9926.
URL PMID |
[5] |
CHEN X D, ROGERS J A, LACOUR STÉPHANIE P,et al. Materials chemistry in flexible electronics. Chemical Society Reviews, 2019,48(6):1431-1433.
DOI URL PMID |
[6] | WEI W, MAN W, MA J M, et al. Electrochromic metal oxides: recent progress and prospect. Advanced Electronic Materials, 2018,4(8):1800185. |
[7] | EH L S, TAN A W M, CHENG X, et al. Recent advances in flexible electrochromic devices: the prerequisites, challenges and prospects. Energy Technology, 2018,6(1):33-45. |
[8] | MA D Y, WANG J M. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China Chemistry, 2017,60(1):62-70. |
[9] | HE H Y, CHEN A L, CHEN X Y, et al. Pretreatment optimization of silver nanowire based transparent electrode and its application in flexible electrochromic devices. Journal of Synthetic Crystals, 2015,44(7):149-154. |
[10] | LI H L, LV Y, ZHANG X, et al. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials and Solar Cells, 2015,136:86-91. |
[11] |
XIAO L L, LÜ Y, DONG W J, et al. Dual-functional WO3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties. ACS Applied Materials & Interfaces, 2016,8(40):27107-27114.
DOI URL PMID |
[12] | EREN E, KARACA G Y, KOC U, et al. Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films, 2017,634:40-50. |
[13] | KOC U, KARACA G Y, OKSUZ A U, et al. RF sputtered electrochromic wool textile in different liquid media. Journal of Materials Science-Materials in Electronics, 2017,28(12):8725-8732. |
[14] | LIU Q R, DONG G B, XIAO Y, et al. An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Materials Letters, 2015,142:232-234. |
[15] | TANG C J, YE J M, YANG Y T, et al. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOx/ITO electrochromic devices prepared by using magnetron sputter deposition. Optical Materials, 2016,55:83-89. |
[16] | COSSARI P, CANNAVALE A, GAMBINO S, et al. Room temperature processing for solid-state electrochromic devices on single substrate: from glass to flexible plastic. Solar Energy Materials and Solar Cells, 2016,155:411-420. |
[17] | WANG Y A, MENG Z H, CHEN H, et al. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices. Journal of Materials Chemistry C, 2019,7(7):1966-1973. |
[18] | XU Z J, LI W F, HUANG J N, et al. Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018,6(40):19584-19589. |
[19] | LIU Y, LÜ Y, TANG Z B, et al. Highly stable and flexible ITO- free electrochromic films with bi-functional stacked MoO3/Ag/MoO3 structures. Electrochimica Acta, 2016,189:184-189. |
[20] | ZHANG H J, JEON K W, SEO D K. Equipment-free deposition of graphene-based molybdenum oxide nanohybrid Langmuir Blodgett films for flexible electrochromic panel application. ACS Applied Materials & Interfaces, 2016,8(32):21539-21544. |
[21] | BODUROV G, STEFCHEV P, IVANOVA T. Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in smart windows. Mater. Lett., 2014,117:270-272. |
[22] | DONG D M, WANG W W, GUO B, et al. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices prepared by reactive DC magnetron sputtering. Applied Surface Science, 2016,383:49-56. |
[23] | BI Z J, LI X M, CHEN Y B, et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochimica Acta, 2017,227:61-68. |
[24] |
HEO S, KIM J, ONG G K, et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Letters, 2017,17(9):5756-5761.
URL PMID |
[25] | LEE S J, LEE T G, NAHM S, et al. Investigation of all-solid-state electrochromic devices with durability enhanced tungsten-doped nickel oxide as a counter electrode. Journal of Alloys and Compounds, 2020,815:152399. |
[26] | LI H, VIENNEAU G, JONES M, et al. Crack-free 2D-inverse opal anatase TiO2 films on rigid and flexible transparent conducting substrates: low temperature large area fabrication and electrochromic properties. Journal of Materials Chemistry C, 2014,2(37):7804-7810. |
[27] | WU J, QIU D, ZHANG H L, et al. Flexible electrochromic V2O5 thin films with ultrahigh coloration efficiency on graphene electrodes. Journal of the Electrochemical Society, 2018,165(5):183-189. |
[28] | WANG J Y, WANG M C, JAN D J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2017,160:476-483. |
[29] |
ZHANG X W, JING Y, ZHAI Q F, et al. Point-of-care diagnoses: flexible patterning technique for self-powered wearable sensors. Analytical Chemistry, 2018,90(20):11780-11784.
DOI URL PMID |
[30] | QIU M J, SUN P, LIU Y J, et al. Visualized UV photodetectors based on prussian blue/TiO2 for smart irradiation monitoring application. Advanced Materials Technologies, 2018,3(2):1700288. |
[31] | MACHER S, SCHOTT M, SASSI M, et al. New roll-to-roll processable PEDOT-based polymer with colorless bleached state for flexible electrochromic devices. Advanced Functional Materials, 2020,30(6):1906254. |
[32] | DIAZ-SANCHEZ J, ROSAS-ABURTO A, VIVALDO-LIMA E, et al. Development and characterization of a flexible electrochromic device based on polyaniline and enzymatically synthesized poly (gallic acid). Synthetic Metals, 2017,223:43-48. |
[33] | AN T C, LING Y Z, GONG S, et al. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Advanced Materials Technologies, 2019,4:1800473. |
[34] | CHE B Y, ZHOU D, LI H, et al. A highly bendable transparent electrode for organic electrochromic devices. Organic Electronics, 2019,66:86-93. |
[35] | ZHOU K L, WANG H, JIU J T, et al. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chemical Engineering Journal, 2018,345:290-299. |
[36] | ZHANG S H, CHEN S, HU F, et al. Patterned flexible electrochromic device based on monodisperse silica/polyaniline core/shell nanospheres. Journal of the Electrochemical Society, 2019,166(8):H343-H350. |
[37] | LI X B, ZHANG L P, WANG B, et al. Highly-conductive porous poly(ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance. Electrochimica Acta, 2020,332:135357. |
[38] |
DENG B, HSU P C, CHEN G C, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Letters, 2015,15(6):4206-4213.
DOI URL PMID |
[39] |
SINGH R, THARION J, MURUGAN S, et al. ITO-free solution- processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode. ACS Applied Materials & Interfaces, 2017,9(23):19427-19435.
DOI URL PMID |
[40] | KIM K W, LEE S B, KIM S H, et al. Spray-coated transparent hybrid electrodes for high-performance electrochromic devices on plastic. Organic Electronics, 2018,62:151-156. |
[41] | SANGLEE K, CHUANGCHOTE S, CHAIWIWATWORAKUL P, , et al. PEDOT: PSS nanofilms fabricated by a nonconventional coating method for uses as transparent conducting electrodes in flexible electrochromic devices. Journal of Nanomaterials. 2017(4): 5176481-1-8. |
[42] | OH H, SEO D G, YUN T Y, et al. Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Applied Materials & Interfaces, 2017,9(8):7658-7665. |
[43] | SEO D G, MOON H C. Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Advanced Functional Materials, 2018,28(14):1706948. |
[44] | KIM J W, MYOUNG J M. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Advanced Functional Materials, 2019,29(13):1808911. |
[45] | VINUALES A, ALESANCO Y, CABANERO G, et al. Incorporating paper matrix into flexible devices based on liquid electrochromic mixtures: enhanced robustness, durability and multi- color versatility. Solar Energy Materials and Solar Cells, 2017,167:22-27. |
[46] | MOON H C, LODGE T P, FRISBIE C D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chemistry of Materials, 2015,27(4):1420-1425. |
[47] | ZHANG B, LI X, GONG G, et al. Preparation and stability of flexible electrochromic devices based on metal supramolecular polymers. Journal of Beijing Institute of Clothing Technology, 2018,38(4):13-20. |
[48] |
CHEN B H, KAO S Y, HU C W, et al. Printed multicolor high-contrast electrochromic devices. ACS Applied Materials & Interfaces, 2015,7:25069-25076.
DOI URL PMID |
[49] |
NUNES M, ARAUJO M, FONSECA J, et al. High performance electrochromic devices based on poly[Ni(salen)]-type polymer films. ACS Applied Materials & Interfaces, 2016,8(22):14231-14243.
DOI URL PMID |
[50] | LI K R, ZHANG Q H, WANG H Z, et al. Light weight, highly bendable and foldable electrochromic films based on all-solution- processed bilayer nanowire networks. Journal of Materials Chemistry C, 2016,4(24):5849-5857. |
[51] | LI G Q, GAO L X, LI L D, et al. An electrochromic and self- healing multi-functional supercapacitor based on PANI/nw-WO2.7/ Au NPs electrode and hydrogel electrolyte. Journal of Alloys and Compounds, 2019,786:40-49. |
[52] | CAI G F, DARMAWAN P, CUI M Q, et al. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Advanced Energy Materials, 2015,6(4):1501882. |
[53] | QU H Y, ZHANG X, ZHANG H C, et al. Highly robust and flexible WO3·2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Solar Energy Materials and Solar Cells, 2017,163:23-30. |
[54] | ALESANCO Y, PALENZUELA J, TENA-ZAERA R, et al. Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperature. Solar Energy Materials and Solar Cells, 2016,157:624-635. |
[55] | GINTING R T, OVHAL M M, KANG J W. A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors. Nano Energy, 2018,53:650-657. |
[56] | WADE C R, Li M, DINCA M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angew. Chem. Int. Ed., 2013,52:13377-13381. |
[57] |
MJEJRI I, DOHERTY C M, RUBIO-MARTINEZ M, et al. Double-sided electrochromic device based on metal-organic frameworks. ACS Appl. Mater. Interfaces, 2017,9(46):39930-39934.
DOI URL PMID |
[58] |
JIANG Q, CHEN M, LI J, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano, 2017,11:1073-1079.
DOI URL PMID |
[59] | SALLES P, PINTO D, HANTANASIRISAKUL K, et al. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater., 2019,29:1809223. |
[60] | CHAUDHARI A K, SOUZA B E, TAN J C. Electrochromic thin films of Zn-based MOF-74 nanocrystals facilely grown on flexible conducting substrates at room temperature. APL Materials, 2019,7(8):081101. |
[61] | LIU Q, XU Z J, QIU W, et al. Ultraflexible, stretchable and fast- switching electrochromic devices with enhanced cycling stability. RSC Advances, 2018,8:18690-18697. |
[62] | CHEN W H, LI F W, LIOU G S. Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes. Advanced Optical Materials, 2019,7(19):1900632. |
[63] |
LIU H S, PAN B C, LIOU G S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale, 2017,9(7):2633-2639.
URL PMID |
[64] |
VARGHESE HANSEN R, YANG J L, ZHENG L X. Flexible electrochromic materials based on CNT/PDA hybrids. Advances in Colloid and Interface Science, 2018,258:21-35.
DOI URL PMID |
[65] |
YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano, 2019,13(3):3141-3150.
DOI URL PMID |
[66] | CAI G F, PARK S, CHENG X, et al. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Science And Technology of Advanced Materials, 2018,19(1):759-770. |
[67] | KIM D S, PARK H, HONG S Y, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019,471:300-308. |
[68] | ZHAO P F, CHEN H L, LI B, et al. Stretchable electrochromic devices enabled via shape memory alloy composites (SMAC) for dynamic camouflage. Optical Materials, 2019,94:378-386. |
[69] |
ZHENG R Z, WANG Y, JIA C Y, et al. Intelligent biomimetic chameleon skin with excellent self-healing and electrochromic properties. ACS Applied Materials & Interfaces, 2018,10(41):35533-35538.
DOI URL PMID |
[70] | WU Q, ZHANG G G, CHEN H X, et al. The state-of-the-art flexible electrochromic material. Journal of Functional Materials, 2019,50(10):10040-10046. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 甄明硕, 刘晓然, 范向前, 张文平, 严东东, 刘磊, 李晨. 电致变色型智能可视化湿度系统[J]. 无机材料学报, 2024, 39(4): 432-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||