无机材料学报 ›› 2020, Vol. 35 ›› Issue (7): 759-768.DOI: 10.15541/jim20190401 CSTR: 32189.14.10.15541/jim20190401
所属专题: 生物材料论文精选(2020)
收稿日期:
2019-08-09
修回日期:
2019-10-02
出版日期:
2020-07-20
网络出版日期:
2020-01-20
作者简介:
张晓旭(1991-), 男, 博士研究生. E-mail: 15202203589@163.com基金资助:
ZHANG Xiaoxu1,2,ZHU Dongbin1,2,3(),LIANG Jinsheng1,2
Received:
2019-08-09
Revised:
2019-10-02
Published:
2020-07-20
Online:
2020-01-20
Supported by:
摘要:
近年来, 齿科氧化锆陶瓷凭借高强韧性、良好生物相容性和美观自然色泽而成为牙齿临床修复的首选对象, 可用于修复、固定局部义齿和种植牙。然而, 在低温潮湿环境中氧化锆陶瓷易发生t-m相变老化, 服役寿命显著缩短, 严重影响其临床稳定性。本文综述了氧化锆陶瓷低温老化的特点、机制及其老化动力学规律, 并介绍了表征氧化锆低温老化现象的常规技术手段以及光学相干断层扫描、聚焦离子束等新方法; 总结了低温老化行为的主要影响因素以及抗老化措施, 具体可通过调整材料体系、改进加工方式等来增强氧化锆的韧性, 解决其存在的低温老化问题。随着齿科氧化锆陶瓷抗老化性能的提高以及健康功能化的未来需求, 其在齿科修复领域的应用将会越来越广泛。
中图分类号:
张晓旭,朱东彬,梁金生. 齿科氧化锆陶瓷水热稳定性研究进展[J]. 无机材料学报, 2020, 35(7): 759-768.
ZHANG Xiaoxu,ZHU Dongbin,LIANG Jinsheng. Progress on Hydrothermal Stability of Dental Zirconia Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 759-768.
图1 氧化锆老化前后的形貌对比[17]
Fig. 1 SEM images of zirconia microstructure (a) without and (b) with LTD, and AFM images of zirconia (c) without and (d) with LTD[17]
图3 m-ZrO2晶核的初始尺寸和生长速率理论模型[32]
Fig. 3 Theoretical model of initial dimensions and growth rate of m-ZrO2 nuclei[32] (a) Top view of surface; (b) Cross section view
图4 μ-Raman分析3Y-TZP陶瓷老化动力学[33]
Fig. 4 Ageing kinetics analysis with 3Y-TZP by μ-Raman spectroscopy[33] (a) m-ZrO2 content depth and corresponding optical images; (b)Transformed depth varies with ageing time
Equation | |
---|---|
Linear | ${{V}_{\text{m}}}=\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{k(I_{\text{t}}^{147}+\delta I_{\text{t}}^{265})+I_{\text{m}}^{181}+I_{\text{m}}^{190}}$ Clarke and Adar[ Katagiri, et al.[ Lim, et al.[ |
Power law[ | ${{V}_{\text{m}}}=\sqrt{0.19-\frac{0.13}{\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{m}}^{181}+I_{\text{m}}^{190}}-1.01}}-0.56$ |
Logarithmic[ | ${{V}_{\text{m}}}=0.65+0.39\lg \left( \frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{t}}^{265}+I_{\text{m}}^{181}+I_{\text{m}}^{190}} \right)$ |
表1 基于拉曼光谱的单斜相定量分析模型
Table 1 Proposed models for monoclinic phase quantification by Raman spectroscopy
Equation | |
---|---|
Linear | ${{V}_{\text{m}}}=\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{k(I_{\text{t}}^{147}+\delta I_{\text{t}}^{265})+I_{\text{m}}^{181}+I_{\text{m}}^{190}}$ Clarke and Adar[ Katagiri, et al.[ Lim, et al.[ |
Power law[ | ${{V}_{\text{m}}}=\sqrt{0.19-\frac{0.13}{\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{m}}^{181}+I_{\text{m}}^{190}}-1.01}}-0.56$ |
Logarithmic[ | ${{V}_{\text{m}}}=0.65+0.39\lg \left( \frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{t}}^{265}+I_{\text{m}}^{181}+I_{\text{m}}^{190}} \right)$ |
图7 2Y-TZP陶瓷晶粒尺寸[50]
Fig. 7 2Y-TZP ceramic[50] (a) SEM images together with the corresponding grain size distribution, and (b) semi-quantitative Y2O3 distribution
图8 表面氮处理的样品老化后形貌[60]
Fig. 8 Morphologies of samples treated with surface nitrogen after aging[60] (a) LSCM image of N-1600; (b) SEM image of N-1400; AFM images of N-1400 (c) surface and (d) bulk
[1] |
TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 2018,34(3):365-375.
DOI URL PMID |
[2] | FERRARI M, VICHI A, ZARONE F. Zirconia abutments and restorations: from laboratory to clinical investigations. Dental Materials, 2015,31(3):63-76. |
[3] |
GAUTAM C, JOYNER J, GAUTAM A, et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 2016,45(48):19194-19215.
DOI URL PMID |
[4] |
GARVIE R C, HANNINK R H, PASCOE R T. Ceramic steel? Nature, 1975,258(5537):703-704.
DOI URL |
[5] |
DENRY I, KELLY J R. State of the art of zirconia for dental applications. Dental Materials, 2008,24(3):299-307.
DOI URL |
[6] |
TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 2018,34(3):365-375.
DOI URL PMID |
[7] |
DENRY I, HOLLOWAY J. Ceramics for dental applications: a review. Materials, 2010,3(1):351-368.
DOI URL |
[8] |
NAKONIECZNY D S, ZIĘBOWICZ A, PASZENDA Z K, et al. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications: a review. Biocybernetics and Biomedical Engineering, 2017,37(1):229-245.
DOI URL |
[9] |
LI R W K, CHOW T W, MATINLINNA J P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. Journal of Prosthodontic Research, 2014,58(4):208-216.
DOI URL |
[10] | ZHU DONG-BIN, CHU RUI-QING, ZHANG XIAO-XU, et al. Progress in mechanism of ceramics inkjet printing. Journal of Mechanical Engineering, 2017,53(13):108-117. |
[11] |
SIVARAMAN K, CHOPRA A, NARAYAN A I, et al. Is zirconia a viable alternative to titanium for oral implant? a critical review. Journal of Prosthodontic Research, 2018,62(2):121-133.
DOI URL PMID |
[12] |
DURACCIO D, MUSSANO F, FAGA M G. Biomaterials for dental implants: current and future trends. Journal of Materials Science, 2015,50(14):4779-4812.
DOI URL |
[13] |
KOBAYASHI K, KUWAJIMA H, MASAKI T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics, 1981 3-4:489-493.
DOI URL |
[14] |
KOSMAČ T, KOCJAN A. Ageing of dental zirconia ceramics. Journal of the European Ceramic Society, 2012,32(11):2613-2622.
DOI URL |
[15] |
PEREIRA G K R, VENTURINI A B, SILVESTRI T, et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2016,55:151-163.
DOI URL PMID |
[16] |
ÖZCAN M, VOLPATO C Â M, FREDEL M C. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Current Oral Health Reports, 2016,3(3):193-197.
DOI URL |
[17] |
WU Z K, LI N, YAN J Z, et al. Effect of hydrothermal aging on the phase mtability, microstructure and mechanical properties of dental 3Y-TZP ceramics. Applied Mechanics and Materials, 2014,529:251-255.
DOI URL |
[18] | LUGHI V, SERGO V. Low temperature degradation aging of zirconia: a critical review of the relevant aspects in dentistry. Denal Materials, 2010,26(8):807-820. |
[19] |
LANGE F F, DUNLOP G L, DAVIS B I. Degradation during aging of transformationt toughened ZrO2-Y2O3 materials at 250 ℃. Journal of the American Ceramic Society, 1986,69(3):237-240.
DOI URL |
[20] |
SATO T, SHIMADA M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. Journal of the American Ceramic Society, 1985,68(6):356-356.
DOI URL |
[21] |
YOSHIMURA M, NOMA T, KAWABATA K, et al. Role of H2O on the degradation process of Y-TZP. Journal of Materials Science Letters, 1987,6(4):465-467.
DOI URL |
[22] |
GUO X. Hydrothermal degradation mechanism of tetragonal zirconia. Journal of Materials Science, 2001,36(15):3737-3744.
DOI URL |
[23] |
GUO X, SCHOBER T. Water incorporation in tetragonal zirconia. Journal of the American Ceramic Society, 2004,87(4):746-748.
DOI URL |
[24] |
LANCE M J, VOGEL E M, REITH L A, et al. Low-temperature aging of zirconia ferrules for optical connectors. Journal of the American Ceramic Society, 2001,84(11):2731-2733.
DOI URL |
[25] |
HARAGUCHI K, SUGANO N, NISHII T, et al. Phase transformation of a zirconia ceramic head after total hip arthroplasty. The Journal of Bone and Joint Surgery British volume, 2001,83(7):996-1000.
DOI URL PMID |
[26] |
CHEVALIER J, GREMILLARD L, VIRKAR A V, et al. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. Journal of the American Ceramic Society, 2009,92(9):1901-1920.
DOI URL |
[27] |
CHEVALIER J, CALES B, DROUIN J M. Low-temperature aging of Y-TZP ceramics. Journal of the American Ceramic Society, 2004,82(8):2150-2154.
DOI URL |
[28] |
FABBRI P, PICONI C, BURRESI E, et al. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dental Materials, 2014,30(2):138-142.
DOI URL |
[29] |
CHEVALIER J. What future for zirconia as a biomaterial? Biomaterials, 2006,27(4):535-543.
DOI URL |
[30] |
CATTANI-LORENTE M, DURUAL S, AMEZ-DROZ M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging. Dental Materials, 2016,32(3):394-402.
DOI URL PMID |
[31] |
WEI C, GREMILLARD L. Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters. Acta Materialia, 2018,144:245-256.
DOI URL |
[32] |
ZHIGACHEV A O, UMRIKHIN A V, RODAEV V V. Theoretical description of zirconia ceramics aging kinetics. Journal of the Australian Ceramic Society, 2018,55(1):65-70.
DOI URL |
[33] |
ZHANG F, INOKOSHI M, VANMEENSEL K, et al. Lifetime estimation of zirconia ceramics by linear ageing kinetics. Acta Materialia, 2015,92:290-298.
DOI URL |
[34] |
GARVIE R C, NICHOLSON P S. Phase analysis in zirconia systems. Journal of the American Ceramic Society, 1972,55(6):303-305.
DOI URL |
[35] | TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society, 1984,67(6):119-121. |
[36] |
KOYAMA T, KUMAMOTO A, MATSUI K, et al. Revealing tetragonal-to-monoclinic phase transformation in Y-TZP at an initial stage of low temperature degradation using grazing incident-angle X-ray diffraction measurement. Journal of the Ceramic Society of Japan, 2018,126(9):728-731.
DOI URL |
[37] |
GREMILLARD L, GRANDJEAN S, CHEVALIER J. A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data. International Journal of Materials Research, 2010,101(1):88-94.
DOI URL |
[38] |
CLARKE D R, ADAR F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. Journal of the American Ceramic Society, 1982,65(6):284-288.
DOI URL |
[39] | KATAGIRI G, ISHIDA H, ISHITANI A, et al. Direct determination by Raman microprobe of the transformation zone size in Y2O3 containing tetragonal ZrO2 polycrystals. Advances in Ceramics, 1986,24A:537-544. |
[40] |
LIM C S, FINLAYSON T R, NINIO F, et al. In-situ measurement of the stress-induced phase transformations in magnesia-partially-stabilized zirconia using Raman spectroscopy. Journal of the American Ceramic Society, 1992,75(6):1570-1573.
DOI URL |
[41] |
KIM B K, HAHN J W, HAN K R. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. Journal of Materials Science Letters, 1997,16(8):669-671.
DOI URL |
[42] |
CASELLAS D, CUMBRERA F L, SáNCHEZ-BAJO F, et al. On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures. Journal of the European Ceramic Society, 2001,21(6):765-777.
DOI URL |
[43] |
LANGE F F. Transformation toughening. Journal of Materials Science, 1982,17(1):225-234.
DOI URL |
[44] |
CHEN S Y, LU H Y. Low-temperature ageing map for 3mol% Y2O3-ZrO2. Journal of Materials Science, 1989,24(2):453-456.
DOI URL |
[45] |
HALLMANN L, ULMER P, REUSSER E, et al. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. Journal of the European Ceramic Society, 2012,32(16):4091-4104.
DOI URL |
[46] |
PAUL A, VAIDHYANATHAN B, BINNER J G P. Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics. Journal of the American Ceramic Society, 2011,94(7):2146-2152.
DOI URL |
[47] |
SWAB J J. Low temperature degradation of Y-TZP materials. Journal of Materials Science, 1991,26(24):6706-6714.
DOI URL |
[48] |
LAWSON S, GILL C, DRANSFIELD G P. Hydrothermal and corrosive degradation of Y-TZP ceramics. Key Engineering Materials, 1995,113:207-214.
DOI URL |
[49] |
DEVILLE S, CHEVALIER J, FANTOZZI G, et al. Low temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. Journal of the European Ceramic Society, 2003,23(15):2975-2982.
DOI URL |
[50] |
SMIRNOV A, KURLAND H D, GRABOW J, et al. Microstructure, mechanical properties and low temperature degradation resistance of 2Y-TZP ceramic materials derived from nanopowders prepared by laser vaporization. Journal of the European Ceramic Society, 2015,35(9):2685-2691.
DOI URL |
[51] |
SUTHARSINI U, THANIHAICHELVAN M, TING C H, et al. Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals. Ceramics International, 2017,43(10):7594-7599.
DOI URL |
[52] |
PRESENDA A, SALVADOR M D, MORENO R, et al. Hydrothermal degradation behavior of Y-TZP ceramics sintered by nonconventional microwave technology. Journal of the American Ceramic Society, 2015,98(12):3680-3689.
DOI URL |
[53] |
CHINTAPALLI R, MESTRA A, MARRO F G, et al. stability of nanocrystalline spark plasma sintered 3Y-TZP. Materials, 2010,3(2):800-814.
DOI URL |
[54] |
WEI C, GREMILLARD L. Surface treatment methods for mitigation of hydrothermal ageing of zirconia. Journal of the European Ceramic Society, 2019,39(14):4322-4329.
DOI URL |
[55] |
DEVILLE S, CHEVALIER J, GREMILLARD L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials, 2006,27(10):2186-2192.
DOI URL PMID |
[56] |
INOKOSHI M, VANMEENSEL K, ZHANG F, et al. Aging resistance of surface-treated dental zirconia. Dental Materials, 2015,31(2):182-194.
DOI URL PMID |
[57] |
WEI C, GREMILLARD L. The influence of stresses on ageing kinetics of 3Y- and 4Y- stabilized zirconia. Journal of the European Ceramic Society, 2018,38(2):753-760.
DOI URL |
[58] | GILES J C. Préparation par reaction à l’état solide et structure des oxynitrures de zirconium. Bulletin de la Société Chimique de France, 1962,22:2118-2122. |
[59] |
CHUNG T J, SONG H S, KIM G H, et al. Microstructure and phase stability of yttria-doped tetragonal zirconia polycrystals heat treated in nitrogen atmosphere. Journal of the American Ceramic Society, 1997,80(10):2607-2612.
DOI URL |
[60] |
VALLE J, MESTRA A, MARRO F G, et al. Mechanical properties and resistance to low temperature degradation of surface nitrided 3Y-TZP. Journal of the European Ceramic Society, 2013,33(15/16):3145-3155.
DOI URL |
[61] |
HÜBSCH C, DELLINGER P, MAIER H J, et al. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating. Acta Biomaterialia, 2015,11(1):488-493.
DOI URL |
[62] |
SIVAKUMAR S, TEOW H L, SINGH R, et al. The effect of iron oxide on the mechanical and ageing properties of Y-TZP ceramic. Key Engineering Materials, 2016,701:225-229.
DOI URL |
[63] |
MAURYA R, GUPTA A, OMAR S, et al. Effect of sintering on mechanical properties of ceria reinforced yttria stabilized zirconia. Ceramics International, 2016,42(9):11393-11403.
DOI URL |
[64] |
KHAN M M, RAMESH S, BANG L T, et al. Effect of copper oxide and manganese oxide on properties and low temperature degradation of sintered Y-TZP ceramic. Journal of Materials Engineering and Performance, 2014,23(12):4328-4335.
DOI URL |
[65] |
PIVA D H, PIVA R H, ROCHA M C, et al. Resistance of InO1.5-stabilized tetragonal zirconia polycrystals to low-temperature degradation. Materials Letters, 2016,163:226-230.
DOI URL |
[66] |
LEE H B, PRINZF B, CAI W. Atomistic simulations of grain boundary segregation in nanocrystalline yttria stabilized zirconia and gadolinia doped ceria solid oxide electrolytes. Acta Materialia, 2013,61(10):3872-3887.
DOI URL |
[67] |
YOKOI T, YOSHIYA M, YASUDA H. On modeling of grain boundary segregation in aliovalent cation doped ZrO2: critical factors in site-selective point defect occupancy. Scripta Materialia, 2015,102:91-94.
DOI URL |
[68] |
ZHANG F, BATUK M, HADERMANN J, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Materialia, 2016,106:48-58.
DOI URL |
[69] |
ZHANG F, VANMEENSEL K, INOKOSHI M, et al. Critical influence of alumina content on the low temperature degradation of (2-3)mol% yttria-stabilized TZP for dental restorations. Journal of the European Ceramic Society, 2015,35(2):741-750.
DOI URL |
[70] |
JING Q, BAO J, RUAN F, et al. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceramics International, 2019,45(5):6066-6073.
DOI URL |
[71] |
ZHANG F, VANMEENSEL K, BATUK M, et al. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomaterials, 2015,16:215-222.
DOI URL |
[72] |
NAKAMURA T, NAKANO Y, USAMI H, et al. Translucency and low-temperature degradation of silica-doped zirconia: a pilot study. Dental Materials Journal, 2016,35(4):571-577.
DOI URL PMID |
[73] |
GREMILLARD L, EPICIER T, CHEVALIER J, et al. Microstructural study of silica-doped zirconia ceramics. Acta Materialia, 2000,48(18/19):4647-4652.
DOI URL |
[74] |
SAMODUROVA A, KOCJAN A, SWAIN M V, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomaterials, 2015,11:477-487.
DOI URL |
[75] |
MOHAMED E, TAHERI M, MEHRJOO M, et al. In vitro biocompatibility and ageing of 3Y-TZP/CNTs composites. Ceramics International, 2015,41(10):12773-12781.
DOI URL |
[76] |
MORALES-RODRIGUEZ A, POYATO R, GUTIERREZ-MORA F, et al. The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals. Ceramics International, 2018,44(15):17716-17723.
DOI URL |
[77] |
SONG YAN-JUN, ZHU DONG-BIN, LIANG JIN-SHENG, et al. Enhanced mechanical properties of 3mol% Y2O3 stabilized tetragonal ZrO2, incorporating tourmaline particles. Ceramics International, 2018,44(13):15550-15556.
DOI URL |
[78] |
ZHU DONG-BIN, SONG YAN-JUN, LIANG JIN-SHNEG, et al. Progress of toughness in dental zirconia ceramics. Journal of Inorganic Materials, 2018,33(4):363-372.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||