无机材料学报 ›› 2020, Vol. 35 ›› Issue (4): 431-438.DOI: 10.15541/jim20190170 CSTR: 32189.14.10.15541/jim20190170
所属专题: 功能陶瓷论文精选(二)
收稿日期:
2019-04-22
修回日期:
2019-06-12
出版日期:
2020-04-20
网络出版日期:
2019-09-12
作者简介:
王 通(1985-), 男, 讲师. E-mail: andyton85@163.com
基金资助:
WANG Tong1,WANG Yuanhao1,YANG Haibo1(),GAO Shuya1,WANG Fen1,LU Yawen2
Received:
2019-04-22
Revised:
2019-06-12
Published:
2020-04-20
Online:
2019-09-12
Supported by:
摘要:
采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (简称BTZN)陶瓷, 研究了BTZN陶瓷的烧结温度、结构、介电性能和铁电性能。BTZN陶瓷烧结温度随着ZnNb2O6含量增加逐渐降低。XRD结果表明当ZnNb2O6含量达到3mol%时出现第二相Ba2Ti5O12。介电测试结果表明随ZnNb2O6含量的增加, BTZN陶瓷介电常数逐渐减小, 而介电常数的频率稳定性逐渐增强。介电温谱表明所有BTZN陶瓷均符合X8R电容器标准。BTZN陶瓷的极化强度值随着ZnNb2O6含量的增加逐渐降低。当x=4mol%时, BTZN陶瓷获得240 kV/cm的击穿电场和1.22 J/cm 3的可释放能量密度。
中图分类号:
王通,王渊浩,杨海波,高淑雅,王芬,鲁雅文. BaTiO3-ZnNb2O6陶瓷介电及储能性能研究[J]. 无机材料学报, 2020, 35(4): 431-438.
WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431-438.
图1 BTZN陶瓷不同烧结温度的密度, 插图为不同ZN含量BTZN陶瓷最佳烧结温度和密度
Fig. 1 Density as a function of sintering temperature for BTZN ceramics with inset showing the optimum sintering temperature and density of BTZN ceramics with different ZN content
图4 BTZN陶瓷的介电性能频率稳定性
Fig. 4 Frequency stability of dielectric properties for BTZN ceramic (a) Frequency dependence of dielectric constant (lines are linear fitting results) with inset showing the fitting values of a and b with different ZN content, and (b) frequency dependence of dielectric loss, (c) FCC, and (d) FCC as a function of ZN content
图5 BTZN陶瓷-100~500 ℃的介电常数和介电损耗
Fig. 5 Temperature dependence of dielectric constant and loss of BTZN ceramics from -100 ℃ to 500 ℃ (a)BTZN1; (b) BTZN2; (c) BTZN3; (d) BTZN4; (e) BTZN5; (f) BTZN6
图7 BTZN陶瓷击穿电场下室温电滞回线(10 Hz), 箭头方向为ZN含量增大方向, 插图为不同ZN含量BTZN陶瓷BDS
Fig. 7 P-E loops of BTZN ceramics at critical electric field, room temperature and 10 Hz with direction of the arrow indicating the direction in which the ZN content increases with inset showing the BDS of BTZN ceramics with different ZN contents
图8 BTZN陶瓷储能性能
Fig. 8 Energy storage properties of BTZN ceramics Pmax, Pr and Pmax-Pr of BTZN ceramics at 100 kV/cm; (b) Energy storage density (W); (c) Recoverable energy storage density (Wrec); (d) Energy loss density (Wloss); (e) Energy storage efficiency (η) as a function of electric field; (f) Variations of W, Wrec, Wloss and η at critical electric field with different ZN contents
[1] | ACOSTA M, NOVAK N, ROJAS V , et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 2017,4(4):041305. |
[2] | HENNINGS D, ROSENSTEIN G . Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc., 1984,67(4):249-254. |
[3] | JIANG X W, HAO H, ZHANG S J , et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc., 2019,39(4):1103-1109. |
[4] | HUANG Y A, LU B, YI X Z , et al. Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. J. Inorg. Mater., 2018,33(7):767-772. |
[5] | GHAYOUR H, ABDELLAHI M . A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol., 2016,292:84-93. |
[6] | ZEB A, MILNE S J . Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc., 2014,34(13):3159-3166. |
[7] | DAMJANOVIC D . Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998,61(9):1267-1324. |
[8] | GUO F Q, ZHANG B H, FAN Z X , et al. Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron., 2016,27(6):5967-5971. |
[9] | YUAN Q B, LI G, YAO F Z , et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy, 2018,52:203-210. |
[10] | HAO X H . A review on the dielectric materials for high energy- storage application. J. Adv. Dielect., 2013,03(1):1330001. |
[11] | DU H L, YANG Z T, GAO F , et al. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater., 2018,33(10):1046-1058. |
[12] | YANG L T, KONG X, LI F , et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci., 2019,102:72-108. |
[13] | YAN F, YANG H B, LIN Y , et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem., 2017,56(21):13510-13516. |
[14] | YANG H B, YAN F, LIN Y , et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustainable Chem. Eng., 2017,5(11):10215-10222. |
[15] | YANG H B, YAN F, LIN Y , et al. Lead-free BaTiO3- Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc., 2017,37(10):3303-3311. |
[16] | YAN F, YANG H B, YING L , et al. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C, 2018,6(29):7905-7912. |
[17] | LIU X Y, YANG H B, YAN F , et al. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J. Alloys Compd., 2019,778:97-104. |
[18] | YANG H B, LIU P F, YAN F , et al. A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd., 2019,773:244-249. |
[19] | YANG Z T, GAO F, DU H L , et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019,58:768-777. |
[20] | WANG T, JIN L, TIAN Y , et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014,137:79-81. |
[21] | JIN L, LI F, ZHANG S J . Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc., 2014,97(1):1-27. |
[22] | WANG T, HU J C, YANG H B , et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys., 2017,121(8):084103. |
[23] | HUANG Y H, WU Y J, LI J , et al. Enhanced energy storage properties of barium strontium titanate ceramics prepared by Sol-Gel method and spark plasma sintering. J. Alloys Compd., 2017,701:439-446. |
[24] | PULI V S, PRADHAN D K, CHRISEY D B , et al. Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci., 2012,48(5):2151-2157. |
[25] | SUN Z, LI L X, YU S H , et al. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans., 2017,46(41):14341-14347. |
[26] | WANG T, JIN L, LI C C , et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015,98(2):559-566. |
[27] | HU Q Y, JIN L, WANG T , et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd., 2015,640:416-420. |
[28] | YUAN Q B, YAO F Z, WANG Y F , et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 2017,5(37):9552-9558. |
[29] | LI W B, ZHOU D, PANG L X , et al. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 2017,5(37):19607-19612. |
[30] | WANG X R, ZHANG Y, SONG X Z , et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012,32(3):559-567. |
[31] | WANG T, JIN L, SHU L L , et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd., 2014,617:399-403. |
[32] | YANG H B, YAN F, LIN Y , et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc., 2018,38(4):1367-1373. |
[33] | YANG H B, YAN F, ZHANG G , et al. Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd., 2017,720:116-125. |
[34] | WU T, PU Y P, CHEN K . Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int., 2013,39(6):6787-6793. |
[35] | WANG T, WANG Y H, YANG H B , et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage. J. Adv. Dielect., 2018,8(6):1850041. |
[36] | GAO F, LIU J J, HONG R Z , et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceram. Int., 2009,35(7):2687-2692. |
[37] | WANG T, WEI X Y, HU Q Y , et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B, 2013,178(16):1081-1086. |
[38] | YAN Y, NING C, JIN Z Z , et al. The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd., 2015,646:748-752. |
[39] | YANG Y, LIU K H, LIU X K , et al. Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int., 2016,42(6):7877-7882. |
[40] | SPAGNOL P D, VARELA J A, ZAGHETE M A , et al. Evidence of hetero-epitaxial growth of Pb(Mg1/3Nb2/3)O3 on the BaTiO3 seed particles of a citrate solution. Mater. Chem. Phys., 2002,77(3):918-923. |
[41] | YANG H B, YAN F, LIN Y , et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol., 2018,6(2):357-365. |
[42] | JIA W X, HOU Y D, ZHENG M P , et al. Superior temperature- stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc., 2018,101(8):3468-3479. |
[43] | SUN Y, LIU H, HAO H , et al. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Am. Ceram. Soc., 2015,98(5):1574-1579. |
[1] | 余艺平, 肖鹏, 赵长浩, 徐梦迪, 姚立冬, 李伟, 王松. 耐高温层状Ta/Ta0.5Hf0.5C金属陶瓷的高频等离子体风洞烧蚀行为研究[J]. 无机材料学报, 2025, 40(7): 790-798. |
[2] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[3] | 魏志帆, 陈国清, 祖宇飞, 刘渊, 李明浩, 付雪松, 周文龙. ZrB2-HfSi2复相陶瓷显微组织及其核-周结构形成机制[J]. 无机材料学报, 2025, 40(7): 817-825. |
[4] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[5] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[6] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[7] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[8] | 唐莹, 李洁, 相怀成, 方维双, 林慧兴, 杨俊峰, 方亮. Rattling效应: 一种影响微波介质陶瓷谐振频率温度系数的新机制[J]. 无机材料学报, 2025, 40(6): 656-666. |
[9] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[10] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[11] | 周阳阳, 张艳艳, 于子怡, 傅正钱, 许钫钫, 梁瑞虹, 周志勇. 通过Bi3+自掺杂增强CaBi4Ti4O15基陶瓷压电性能[J]. 无机材料学报, 2025, 40(6): 719-728. |
[12] | 杨燕, 张发强, 马名生, 王墉哲, 欧阳琪, 刘志甫. 基于CuO-TiO2-Nb2O5复合氧化物烧结助剂的ZnAl2O4陶瓷低温烧结研究[J]. 无机材料学报, 2025, 40(6): 711-718. |
[13] | 黄子鹏, 贾文晓, 李玲霞. (Ti0.5W0.5)5+掺杂MgNb2O6陶瓷的晶体结构与太赫兹介电性能[J]. 无机材料学报, 2025, 40(6): 647-655. |
[14] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[15] | 尹长志, 成名飞, 雷微程, 蔡弋炀, 宋小强, 付明, 吕文中, 雷文. Ga3+掺杂对SrAl2Si2O8陶瓷晶体结构及微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 704-710. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||