无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 269-278.DOI: 10.15541/jim20180248 CSTR: 32189.14.10.15541/jim20180248
所属专题: 热电材料与器件
胡晓凯1,4, 张双猛1, 赵府1,2, 刘勇1,3, 刘玮书1
收稿日期:
2018-06-21
修回日期:
2018-08-23
出版日期:
2019-03-20
网络出版日期:
2019-02-26
作者简介:
胡晓凯(1978-), 男, 博士. E-mail: xiaokai.hu@deakin.edu.au
基金资助:
HU Xiao-Kai1,4, ZHANG Shuang-Meng1, ZHAO Fu1,2, LIU Yong1,3, LIU Wei-Shu1
Received:
2018-06-21
Revised:
2018-08-23
Published:
2019-03-20
Online:
2019-02-26
Supported by:
摘要:
基于塞贝克效应的热电转换技术, 在大量分散的低品位废热转换电能方面有着不可替代的优势。以热电优值ZT为性能指标的热电材料研发成为新能源材料领域研究的热点之一。近年来, 大量新型中温热电材料被相继发现, 然而新型热电材料的产业化应用, 尤其是在温差发电方面的进展尤为缓慢, 其中热电器件中的材料界面问题严重制约了热电转换技术的应用进程。本文从Bi2Te3型器件在温差发电方面所遇到的技术瓶颈为例, 阐述热电器件中的界面关键技术, 并归纳出电极接触界面需要综合考虑低的界面电阻、高的结合强度、以及好的高温稳定性能。然后总结了与Bi2Te3、PbTe、CoSb3基三种热电材料相关的界面材料研究进展。
中图分类号:
胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书. 热电器件的界面和界面材料[J]. 无机材料学报, 2019, 34(3): 269-278.
HU Xiao-Kai, ZHANG Shuang-Meng, ZHAO Fu, LIU Yong, LIU Wei-Shu. Thermoelectric Device: Contact Interface and Interface Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269-278.
T range /℃ | Compositions/wt% | Liquidus T/℃ | Solidus T/℃ |
---|---|---|---|
100-200 | 52 In+48 Sn | 118 | 118 |
85 Sn+10 Bi+5 Zn | 190 | 168 | |
63 Sn+37 Pb | 183 | 183 | |
91.2 Sn+8.8 Zn | 198.5 | 198.5 | |
200-300 | 50 Sn+50 Pb | 212 | 183 |
96.5 Sn+3 Ag+0.5 Cu | 220 | 217 | |
95 Sn+5 Sb | 240 | 232 | |
300-400 | 5 Sn+95 Pb | 312 | 305 |
95 Pb+5 Ag | 364 | 305 | |
75 Sn+0.25 Sb+ 0.25 Bi+24.5 Pb | 380 | 370 | |
400-500 | 94 Sn+0.2 Pb+5.8 Sb | 461 | 450 |
88 Pb+11.75 Sb+0.25 Bi | 473 | 473 | |
500-600 | 97 Pb+0.4 Sb + 2.35 Ag+0.25 Bi | 580 | 580 |
8.5 Sn+90 Pb+1.5 Ag | 588 | 588 |
表1 一些焊料的成分和液相线、固相线温度[16]
Table 1 Compositions of some solders as well as the temperature (T) at liquidus and solidus[16]
T range /℃ | Compositions/wt% | Liquidus T/℃ | Solidus T/℃ |
---|---|---|---|
100-200 | 52 In+48 Sn | 118 | 118 |
85 Sn+10 Bi+5 Zn | 190 | 168 | |
63 Sn+37 Pb | 183 | 183 | |
91.2 Sn+8.8 Zn | 198.5 | 198.5 | |
200-300 | 50 Sn+50 Pb | 212 | 183 |
96.5 Sn+3 Ag+0.5 Cu | 220 | 217 | |
95 Sn+5 Sb | 240 | 232 | |
300-400 | 5 Sn+95 Pb | 312 | 305 |
95 Pb+5 Ag | 364 | 305 | |
75 Sn+0.25 Sb+ 0.25 Bi+24.5 Pb | 380 | 370 | |
400-500 | 94 Sn+0.2 Pb+5.8 Sb | 461 | 450 |
88 Pb+11.75 Sb+0.25 Bi | 473 | 473 | |
500-600 | 97 Pb+0.4 Sb + 2.35 Ag+0.25 Bi | 580 | 580 |
8.5 Sn+90 Pb+1.5 Ag | 588 | 588 |
图4 通过粉末热压法连接的Ni/Bi2Te3界面接触电阻的扫描探针测试方法示意图(a)(插图为Bi2Te3基接触脚照片), Ni/Bi2Te2.7Se0.3/Ni和Ni/Bi0.4Sb1.6Te3/Ni的电势曲线以及接触电阻计算方法(b)[21]
Fig. 4 Schematic diagram of a scanning voltage probe for contact resistance measurement, and a Bi2Te3-based leg (inset) (a); contact resistance measurement for both n-type Ni/Bi2Te2.7Se0.3/Ni and p-type Ni/Bi0.4Sb1.6Te3/Ni(b)[21]
图5 Ni/Bi0.4Sb1.6Te3界面(a)和Ni/Bi2Te2.7Se0.3界面(b)附近元素百分浓度分布[21]
Fig.5 Comparison of composition profile between Ni/Bi0.4Sb1.6Te3 interface (a)and Ni/Bi2Te2.7Se0.3Interface (b) obtained from a selected area SEM-EDS[21]IRL: interface reaction layer, TDR: Te-deficient region
图7 聚光太阳能热电发电器件: 新型NiFe基合金用于n型Bi2Te3的金属化[12]
Fig. 7 Concentrating solar thermoelectric generators: new type of NiFe-based alloy applied to metallization of n-type Bi2Te3[12]
图8 虚拟的碲化铋热电偶臂最大输出功率(a)和效率(b)随界面接触电阻率的变化情况, 其中l为热电臂高度
Fig.8 The maximum output power (a) and efficiency (b) vs. interface contact resistivity for the simulated Bi2Te3 leg (l is the leg height)
图9 碲化铋-方钴矿两段式热电器件的发电效率(a)和器件热端SKD/Ti0.88Al0.12/Ni界面与电极扫描电镜照片(b) [13]
Fig.9 (a) Power generation efficiency of segmented BT/SKD modules and (b) scanning electron microscopy image of SKD/Ti0.88Al0.12/Ni interface and electrode on hot side[13]
[1] | 中国建筑节能协会. 中国建筑能耗研究报告(2017年), 上海, 2017. |
[2] | 陈立东, 刘睿恒, 史迅. 热电材料与器件. 北京:科学出版社, 2018:1-14. |
[3] | LIU W S, HU J Z, ZHANG S M,et al. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys., 2017, 1: 50-60. |
[4] | ZHU T J, LIU Y T, FU C G,et al. Compromise and synergy in high efficiency thermoelectric materials. Adv. Mater, 2017, 29(14): 1605884. |
[5] | LI J F, LIU W S, ZHAO L D,et al. High-performance nanostructured thermoelectric materials. NPGAsia Mater., 2010, 2(4):152-158. |
[6] | ZEBARJADI M, ESFARJANI K, DRESSELHAUS M S,et al. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci., 2012,5(1): 5147-5162. |
[7] | CHEN L D, XIONG Z, BAI S Q.Recent progress of thermoelectric nano-composites.Journal ofInorganic Materials, 2010, 25(6): 561-568. |
[8] | ZHAN B, LAN J Z, LIU Y C,et al. Research progress of oxides thermoelectric materials. Journal ofInorganic Materials, 2014, 29(3): 237-244. |
[9] | CHEN G, LIU T X, TANG X F,et al. Optimization of electrode material and connecting process for Mg-Si-Sn based thermoelectric device. Journal ofInorganic Materials, 2015, 30(6): 639-646. |
[10] | FU C, BAI S, LIU Y,et al. Realizing high figure of merit in heavy band p-type half-Heusler thermoelectric materials. Nat. Comm., 2015, 6: 8144-8151. |
[11] | HU X, JOOD P, OHTA M,et al. Power genaration of nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci., 2016, 9(2): 517-529. |
[12] | KRAEMER D, JIE Q, MCENANEY K,et al. Concentrating solar thermoelectric generator with a peak efficiency of 7.4%. Nature Energy, 2016, 1: 1-8. |
[13] | ZHANG Q, LIAO J, TANG Y,et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci., 2017, 10(4): 956-963. |
[14] | HAO F, QIU P, TANG Y,et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃. Energy Environ. Sci.,2016, 9(10): 3120-3127. |
[15] | 张建中. 温差电技术. 天津:天津科学技术出版社, 2013:131-135, 219-224. |
[16] | 张文典. 实用表面组装技术, 4版. 北京:电子工业出版社, 2015:162-247. |
[17] | HATZIKRANIOTIS E, ZORBAS K T, SAMARAS I,et al. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J. Electron. Mater., 2010,39(9): 2112-2116. |
[18] | PARK W, BARAKO M T, MARCONNET A M, et al. Effect of thermal cycling on commercial thermoelectric modules. 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 2012, 16(12): 107-112. |
[19] | CLIN TH, TURENNE S, VASILEVSKIY D,et al. Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J. Electro. Mater.,2009,38(7): 994-1001. |
[20] | KIM H S, WANG T, LIU W S,et al.Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators. Adv. Funct. Mater.,2016, 26(21): 3678-3686. |
[21] | LIU W S, WANG H, WANG L,et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications.J. Mater. Chem. A, 2013, 1(42): 13093-13100. |
[22] | LAN Y C, WANG D Z, CHEN G, REN Z F. Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials. Appl. Phys. Lett., 2008, 92(10): 101910-1-3. |
[23] | ROWE D M.CRC Handbook of Thermoelectrics. USA: CRC Press LLC, 1995: 479-485. |
[24] | LIU W S, QING J, KIM H S,et al. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Materialia, 2015, 87: 357-376. |
[25] | HABA V. Method and Materials For Obtaining Low Resistance Bond to Bismuth Telluride. US Patent, 3017693, 1962. US Patent, 3079455, 1963. |
[26] | ROSI F D, BERNOFF R A.Method and Materials for Obtaining Low Resistance Bonds to Thermoelectric Bodies. US Patent, 3037064, 1962. |
[27] | LIAO C N, LEE C H, CHEN W J.Effect of interfacial compound formation on contact resistivity of soldered junction between bismuth telluride based thermoelements and copper.Electrochem. Solid-State Lett., 2007,10(9): 23-25. |
[28] | MENGALI O J, SEILER M R.Contact resistance studies on thermoelectric materials.Adv. Energy Conversion, 1962, 2(62): 59-68. |
[29] | WEITZMAN L H. Etching Bismuth Telluride.US Patent, 3338765, 1967. |
[30] | TALOR P J, MADDUX J R, MEISSNER G, ,et al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett.. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett., 2013, 103(4): 043902-1-4. |
[31] | LIN W P, WESOLOWSKI D E, LEE C C.Barrier/bonding layers on bismuth telluride for high temperature thermoelectric modules.J. Mater. Sci.: Mater. Electron., 2011,22(9): 1313-1320. |
[32] | IYORE O D.Interface Characterization of Contacts to Bulk Bismuth Telluride Alloys. Richardson, TX: University of Texas at Dallas, Master’s Thesis, UMI No. 1470835, 2009. |
[33] | FENG H P, YU B, CHEN S,et al. Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemical and mechanical methods. Electrochimica Acta, 2011, 56(8): 3079-3084. |
[34] | IYORE O D, LEE T H, GUPTA R P,et al. Interface characterization of nickel contact to bulk bismuth telluride selenide. Surf. Interface Analysis, 2009,41(5): 440-444. |
[35] | WEINSTEIN M, MLAVSKY A I.Bonding of lead telluride to pure iron electrodes.Rev. Sci. Instrum., 1962, 33(10): 1119-1120. |
[36] | SINGH A, BHATTACHARYA S, THINAHARAN C, ,et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85). J. Phys. D: Appl. Phys., 2008, 42(1): 015502- 1-6. |
[37] | LEAVITT F A, MCCOY J W, MARUDHACHALAM P, ,et al. Segmented Thermoelectric Module with Bonded Legs. US Patent. Segmented Thermoelectric Module with Bonded Legs. US Patent, 2012/0103381 A1, 2012. |
[38] | XIA H, DRYMIOTIS F, CHEN C L,et al. Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications. J. Mater. Sci., 2015, 50(7): 2700-2708. |
[39] | XIA H, DRYMIOTIS F, CHEN C L,et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications. J. Mater. Sci., 2014, 49(4): 1716-1723. |
[40] | XIA H, CHEN C L, DRYMIOTIS F,et al. Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication. J. Electro. Mater.,2014,43(11): 4064-4069. |
[41] | ORIHASHI M, NODA Y, CHEN L,et al. Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te Joining by Plasma Activated Sintering. 17th International Conference on Thermoelectrics, Nagoya, 1998: 543-546. |
[42] | FERRERES X R, YAMINI S A, NANCARROW M,et al. One-step bonding of Ni electrode to n-type PbTe — a step towards fabrication of thermoelectric generators. Materials and Design, 2016, 107: 90-97. |
[43] | LI C C, DRYMIOTIS F, LIAO L L,et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C,2015, 3(40): 10590-10596. |
[44] | GARCIA-CANADAS J, POWELL A V, KALTZOGLOU A,et al. Fabrication and evaluation of a skutterudite-based thermoelectric module for high-temperature applications. J. Electro. Mater., 2013, 42(7): 1369-1374. |
[45] | FAN X C, GU M, SHI X,et al. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints. Ceramics International, 2015, 41(6): 7590-7595. |
[46] | SALVADOR J R, CHO J Y, YE Z,et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys., 2014, 16(24): 12510-12520. |
[47] | FAN J F, CHEN L D, BAI S Q,et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Materials Letters, 2004, 58(30): 3876-3878. |
[48] | ZHAO D G, GENG H R, TENG X Y.Fabrication and reliabilityevaluation of CoSb3/W-Cu thermoelectric element.J. Alloys Compd., 2012, 517(7): 198-203. |
[49] | ZHAO D G, LI X Y, JIANG W,et al. Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation. Journal of Inorganic Materials, 2009, 24(3): 545-548. |
[50] | GU M, XIA X G, LI X Y,et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. J. Alloys Compd., 2014, 610: 665-670. |
[51] | TANG Y S, BAI S Q, REN D D,et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder. Journal of Inorganic Materials, 2015, 30(3): 256-260. |
[52] | GU M, XIA X G, HUANG X Y, BAI S Q,et al. Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. J. Alloys Compd., 2016, 671: 238-244. |
[53] | CAILLAT T, FLEURIAL J P, SNYDER G J, et al. Development of High Efficiency Segmented Thermoelectric Unicouples. Proceedings of 20th Int. Conf. on Thermoelectrics, Beijing, 2001, 504(1): 282-285. |
[54] | FLEURIAL J P, CAILLAT T, CHI S C.Electrical Contacts for Skutterudite Thermoelectric Materials.US Patent, 20120006376 A1, 2012. |
[55] | GUO J Q, GENG H Y, OCHI T,et al. Development of skutterudite thermoelectric materials and modules. J. Electro. Mater., 2012, 41(6): 1036-1042. |
[56] | MUTO A, YANG J, POUDEL B, et al. Skutterudite unicouple characterization for energy harvesting applications. Adv. Energy Mater., 2013, 3(2): 245-251. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||