无机材料学报 ›› 2019, Vol. 34 ›› Issue (1): 96-102.DOI: 10.15541/jim20180172 CSTR: 32189.14.10.15541/jim20180172
所属专题: MAX相和MXene材料; 光伏材料
熊浩1, 张渤昕1, 贾巍2, 张青红1, 谢华清3
收稿日期:
2018-04-19
修回日期:
2018-08-01
出版日期:
2019-01-21
网络出版日期:
2018-12-17
作者简介:
熊浩(1990-),男,博士研究生. E-mail: xhqmlwhj@126.com
基金资助:
XIONG Hao1, ZHANG Bo-Xin1, JIA Wei2, ZHANG Qing-Hong1, XIE Hua-Qing3
Received:
2018-04-19
Revised:
2018-08-01
Published:
2019-01-21
Online:
2018-12-17
About author:
XIONG Hao. E-mail: xhqmlwhj@126.com
摘要:
作为一类新型薄膜太阳能电池, 近年来钙钛矿太阳电池的发展十分迅速, 其效率已接近商业化硅基太阳能电池, 但是钙钛矿薄膜在空气中稳定性较差, 严重限制了其进一步的商业化应用。本研究通过在钙钛矿薄膜中添加聚4-乙烯吡啶(PVP)来增强钙钛矿薄膜在空气中的稳定性。通过形貌、结构及性能测试, 发现相比于未添加PVP的钙钛矿薄膜, 添加PVP的钙钛矿薄膜形貌更均匀致密。添加0.4wt% PVP将钙钛矿太阳电池的光电效率从6.09%提升到13.07%, 而且, 存放在相对湿度超过50%的空气中, 其电池效率衰减为一半的时间由原来的3 d延长到3 w, 但是过多的PVP添加量会导致PbI2与CH3NH3I反应不完全。添加PVP工艺进一步优化后, 有望用于大面积、高稳定性的钙钛矿薄膜的制备。
中图分类号:
熊浩, 张渤昕, 贾巍, 张青红, 谢华清. 高分子PVP添加剂对钙钛矿太阳电池稳定性的提升[J]. 无机材料学报, 2019, 34(1): 96-102.
XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(1): 96-102.
图1 添加不同含量PVP的PbI2薄膜的SEM照片
Fig. 1 Surface SEM images of PbI2 films on the glass with or without polymer modification (a) Without PVP; (b) 0.2wt% PVP; (c) 0.4wt% PVP; (d) 0.6wt% PVP; (e) 0.8wt% PVP
图2 添加不同含量PVP的钙钛矿薄膜的SEM照片
Fig. 2 Surface SEM images of perovskite films with various concentration of PVP (a) Without PVP; (b) 0.2wt% PVP; (c) 0.4wt% PVP; (d) 0.6wt% PVP; (e) 0.8wt% PVP
图3 添加不同含量PVP的薄膜紫外-可见吸收光谱图
Fig. 3 UV-visible absorption spectra of films in presence of varying concentration of PVP (a) PbI2 films; (b) CH3NH3PbI3 films
图5 添加不同含量PVP的新鲜钙钛矿薄膜的XRD图谱; 实物照片中PVP添加量从下到上依次为0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% (左边为碘化铅, 右边为钙钛矿)
Fig. 5 XRD patterns of fresh perovskite films doped with PVP of various quantities; The optical photos from bottom to top in the inserted are 0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% PVP (PbI2 on the left, perovskite on the right)
图6 在空气中放置3 w后添加不同含量PVP的钙钛矿薄膜的XRD图谱; 实物照片中PVP添加量从下到上依次为0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt%(左边为碘化铅右边为钙钛矿)
Fig. 6 XRD patterns of CH3NH3PbI3 doped with PVP of various quantities after three weeks in the air; The optical photos from bottom to top in the inserted are 0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% PVP, respectively (PbI2 on the left, perovskite on the right)
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 16.17 | 39.40 | 6.09 |
0.2wt% PVP | 1.00 | 19.14 | 46.10 | 8.86 |
0.4wt% PVP | 1.04 | 19.60 | 64.00 | 13.07 |
0.6wt% PVP | 1.05 | 17.39 | 67.77 | 12.34 |
0.8wt% PVP | 1.04 | 14.83 | 67.38 | 10.42 |
表1 现场制备的添加不同含量PVP的钙钛矿太阳能电池性能参数
Table 1 The parameters of as-prepared perovskite solar cells doped with various concentration of PVP
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 16.17 | 39.40 | 6.09 |
0.2wt% PVP | 1.00 | 19.14 | 46.10 | 8.86 |
0.4wt% PVP | 1.04 | 19.60 | 64.00 | 13.07 |
0.6wt% PVP | 1.05 | 17.39 | 67.77 | 12.34 |
0.8wt% PVP | 1.04 | 14.83 | 67.38 | 10.42 |
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 1.09 | 12.05 | 31.64 | 4.17 |
0.2wt% PVP | 0.78 | 16.75 | 48.36 | 6.33 |
0.4wt% PVP | 1.04 | 21.05 | 53.05 | 11.60 |
0.6wt% PVP | 0.99 | 21.44 | 47.12 | 10.02 |
0.8wt% PVP | 0.84 | 17.20 | 66.10 | 9.52 |
表2 在空气中放置3 d的添加不同含量PVP的钙钛矿太阳能电池性能参数
Table 2 The parameters of perovskite solar cells doped with various concentration of PVP after three days in the air
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 1.09 | 12.05 | 31.64 | 4.17 |
0.2wt% PVP | 0.78 | 16.75 | 48.36 | 6.33 |
0.4wt% PVP | 1.04 | 21.05 | 53.05 | 11.60 |
0.6wt% PVP | 0.99 | 21.44 | 47.12 | 10.02 |
0.8wt% PVP | 0.84 | 17.20 | 66.10 | 9.52 |
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 6.18 | 26.35 | 1.55 |
0.2wt% PVP | 1.03 | 15.53 | 29.75 | 4.75 |
0.4wt% PVP | 0.80 | 15.12 | 54.84 | 6.63 |
0.6wt% PVP | 0.82 | 10.88 | 68.36 | 6.11 |
0.8wt% PVP | 0.97 | 21.13 | 34.29 | 7.04 |
表3 在空气中放置3 w的添加不同含量PVP的钙钛矿太阳能电池性能参数
Table 3 The parameters of perovskite solar cells doped with various concentration of PVP after three weeks in the air
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 6.18 | 26.35 | 1.55 |
0.2wt% PVP | 1.03 | 15.53 | 29.75 | 4.75 |
0.4wt% PVP | 0.80 | 15.12 | 54.84 | 6.63 |
0.6wt% PVP | 0.82 | 10.88 | 68.36 | 6.11 |
0.8wt% PVP | 0.97 | 21.13 | 34.29 | 7.04 |
[1] | HADADIAN M, CORREA-BAENA J P, GOHARSHADI E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater., 2016, 28(39): 8681-8686. |
[2] | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2: 591-1-7. |
[3] | MENARD E, MEITL M A, SUN Y, et al.Micro and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev., 2007, 107(4): 1117-1160. |
[4] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Mater., 2014, 13(9): 897-903. |
[5] | GUO XIU-BIN, YU WEI, LI JING, et al.Improving microstructure and photoelectric performance of the perovskite material via mixed solvents. [J]. Inorg. Mater., 2017, 32(8): 870-876. |
[6] | CHANG C Y, CHU C Y, HUANG Y C, et al.Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955-4961. |
[7] | JEON N J, NOH J H, YANG W S, et al.Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476-480. |
[8] | ZHOU Z, PANG S, LIU Z, et al.Interface engineering for high-performance perovskite hybrid solar cells. J. Mater. Chem. A, 2015, 3(38): 19205-19217. |
[9] | ZHANG MIN, WANG ZENG-HUA, ZHENG XIAO-JIA, et al.Structural effect of TiO2 on the performance of MAPbBr3 solar cells. [J]. Inorg. Mater., 2018, 33(2): 245-250. |
[10] | YANG G, TAO H, QIN P, et al.Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A, 2016, 4(11): 3970-3990. |
[11] | MALI S S, HONG C K.Pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8(20): 10528-10540. |
[12] | JIANG WEN-LONG, ZHOU WEI, YING JI-FEI, et al.Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers. [J]. Inorg. Mater., 2017, 32(1): 96-100. |
[13] | LIU CHANG, YUAN SHUAI, ZHANG HAI-LIANG, et al.p-type CuI films grown by iodination of copper and their application as hole transporting layers for inverted perovskite solar cells. [J]. Inorg. Mater., 2016, 31(4): 358-364. |
[14] | HUANG X, ZHU C, ZHANG S, et al.Porphyrin-dithienothiophene π-conjugated copolymers: synthesis and their applications in field- effect transistors and solar cells. Macromolecules, 2008, 41(19): 6895-6902. |
[15] | XIONG H, RUI Y, LI Y, et al.Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J. Mater. Chem. C, 2016, 4(28): 6848-6854. |
[16] | MÜLLER C, GLASER T, PLOGMYER M, et al. Water infiltration in methylammonium leadiodide perovskite: fast and inconspicuous. Chem. Mater., 2015, 27(22): 7835-7841. |
[17] | AMEEN S, RUB M A, KOSA S A, et al.Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 2016, 9(1): 10-27. |
[18] | LI B, LI Y, ZHENG C, et al.Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv., 2016, 6(44): 38079-38091. |
[19] | ZHANG M, LYU M, YU H, et al.Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chem-Eur J., 2015, 21(1): 434-439. |
[20] | CHAUDHARY B, KULKARNI A, JENA A K, et al.Poly (4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. ChemSusChem, 2017, 10(11): 2473-2479. |
[21] | PALOMARES E, CLIFFORD J N, HAQUE S A, et al.Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. [J]. Am. Chem. Soc., 2003, 125(2): 475-482. |
[22] | CORBETT J D, VON WINBUSH S, ALBERS F C.The solubility of the post-transition metals in their molten halides. [J]. Am. Chem. Soc., 1957, 79(12): 3020-3024. |
[23] | MABROUK S, DUBEY A, ZHANG W, et al.Increased efficiency for perovskite photovoltaics via doping the PbI2 layer. J. Phys. Chem. C, 2016, 120(43): 24577-24582. |
[24] | OKU T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells, Solar Cells-New Approaches and Reviews, ed. L. A. Kosyachenko, InTech, ISBN: 78-953-51-2184-8, DOI: 10.5772/59284. 2015. |
[25] | LIU T, HU Q, WU J, et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells. Adv. Energy Mater., 2016, 6(3): 1501890-1-7. |
[26] | KIM Y C, JEON N J, NOH J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater., 2016, 6(4): 1502104-1-8. |
[27] | ZUO L, GUO H, JARIWALA S, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv., 2017, 3(8): e1700106-1-12. |
[1] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[2] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[3] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[4] | 肖梓晨, 何世豪, 邱诚远, 邓攀, 张威, 戴维德仁, 缑炎卓, 李金华, 尤俊, 王贤保, 林俍佑. 钙钛矿太阳能电池纳米纤维改性电子传输层研究[J]. 无机材料学报, 2024, 39(7): 828-834. |
[5] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[6] | 陈甜, 罗媛, 朱刘, 郭学益, 杨英. 有机-无机共添加增强柔性钙钛矿太阳能电池机械弯曲及环境稳定性能[J]. 无机材料学报, 2024, 39(5): 477-484. |
[7] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[8] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
[9] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[10] | 周泽铸, 梁子辉, 李静, 吴聪聪. 基于挥发性溶剂制备MAPbI3钙钛矿太阳能电池/模组[J]. 无机材料学报, 2024, 39(11): 1197-1204. |
[11] | 厉佥元, 李纪伟, 张钰涵, 刘焱康, 孟阳, 储余, 朱一佳, 徐诺言, 朱亮, 张传香, 陶海军. PbTiO3修饰和极化处理提升钙钛矿太阳能电池性能[J]. 无机材料学报, 2024, 39(11): 1205-1211. |
[12] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[13] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. |
[14] | 方万丽, 沈黎丽, 李海艳, 陈薪羽, 陈宗琦, 寿春晖, 赵斌, 杨松旺. NiOx介孔层的成膜过程对碳电极钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2023, 38(9): 1103-1109. |
[15] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||