Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (1): 81-86.DOI: 10.15541/jim20170142
• Orginal Article • Previous Articles Next Articles
SUN Li-Mei, SHI Le-Le, ZHANG Shuai-Shuai, ZHANG Yi-Jia, LI Zeng-Hui, HE Wurigamula
Received:
2017-03-29
Revised:
2017-06-07
Online:
2018-01-23
Published:
2017-12-15
Supported by:
CLC Number:
SUN Li-Mei, SHI Le-Le, ZHANG Shuai-Shuai, ZHANG Yi-Jia, LI Zeng-Hui, HE Wurigamula. Cathode Performance of Mg-H2O2 Semi-fuel Cell with Pdn-Fe Alloy as Cathode[J]. Journal of Inorganic Materials, 2018, 33(1): 81-86.
Fig. 7 Perfomance of Mg-H2O2 semi fuel cells with Pd/C and Pd4-Fe/C as cathodic catalysts^Anodiccatalysts: AZ31Mg alloy, catholyte: 0.4 mol/L H2O2+0.1 mol/L H2SO4+40 g/L NaCl, anolyte: 40 g/L NaCl aqueous solution
[1] | YU X W, HUANG X J, CHEN L Q.Development of solid oxide fuel cells.Battery, 2002(2): 110-112. |
[2] | ZHAN X L, HAN M F.Research on electrocatalysts of proton exchang membrane fuel cells.Rare Metal Materials and Engineering, 2007, 36(S2): 645-647. |
[3] | CHENG K, CAO D X, YANG F, et al.Facile synthesis of morphology- controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction.Journal of Power Sources, 2014, 253: 214-223. |
[4] | CHENG K, YANG F, YAN P,et al..Preparation of Co3O4 nanosheet supported on Ni foam and its catalytic performance for H2O2 electroreduction.Chemical Research in Chinese Universities 2014(01): 110-114. |
[5] | SUNG W, CHOI J W.A membraneless microscale fuel cell using non-noble catalysts in alkaline solution.Journal of Power Sources, 2007, 172(1): 198-208. |
[6] | BEWER T, BECKMANN T, DOHLE H, et al.Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution.Journal of Power Sources, 2004, 125(1): 1-9. |
[7] | YANG F, CHENG K, LIU X L, et al.Direct peroxide-peroxide fuel cell - Part 2: Effects of conditions on the performance.Journal of Power Sources, 2012, 217: 569-573. |
[8] | YANG F, CHENG K, XIAO X, et al.Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell.Journal of Power Sources, 2014, 245: 89-94. |
[9] | CAO D X, CHEN D D, LAN J, et al.An alkaline direct NaBH4- H2O2 fuel cell with high power density.Journal of Power Sources, 2009, 190(2): 346-350. |
[10] | RAMAN R K, PRASHANT S K, SHUKLA A K.A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack.Journal of Power Sources, 2006, 162(2): 1073-1076. |
[11] | HASVOLD Ø, JOHANSEN K H, MOLLESTAD O, et al.The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle.Journal of Power Sources, 1999, 80(1/2): 254-260. |
[12] | BESSETTE R R, MEDEIROS M G, PATRISSI C J, et al.Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications.Journal of Power Sources, 2001, 96(1): 240-244. |
[13] | HASVOLD Ø, STQRKERSEN N J, FORSETH S, et al.Power sources for autonomous underwater vehicles.Journal of Power Sources, 2006, 162(2): 935-942. |
[14] | MEDEIROS M G, BESSETTE R R, DESCHENES C M, et al.Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles.Journal of Power Sources, 2004, 136(2): 226-231. |
[15] | MEDEIROS M G, DOW E G.Magnesium-solution phase catholyte seawater electrochemical system.Journal of Power Sources, 1999, 80(1/2): 78-82. |
[16] | SUN L M, ZHANG C, LI H T, et al.. A study of Pd-Ru on nickel foam cathode for magnesium-hydrogen peroxide semi-fuel cell.Precious Metals, 2011(04): 1-5. |
[17] | ZHAN J, LU E J, CAI M, et al.Controlled synthesis and electrocatalytic performance of porous nickel cobaltite rods.Journal of Inorganic Materials, 2017, 32(1): 11-17. |
[18] | YANG F, CHENG K, WU T H, et al.Dendritic palladium decorated with gold by potential pulse electrodeposition: enhanced electrocatalytic activity for H2O2 electroreduction and electrooxidation.Electrochimica Acta, 2013, 99: 54-61. |
[19] | YANG F, CHENG K, WU T H, et al.Au-Pd nanoparticles supported on carbon fiber cloth as the electrocatalyst for H2O2 electroreduction in acid medium.Journal of Power Sources, 2013, 233: 252-258. |
[20] | TIAN Y M, XU X, GAO Y.A Al-H2O2 semi fuel cell using Fe-N/C as cathode.Chinese Journal of Power Sources, 2012(08): 1125-1127. |
[21] | LI Y H, CAO D X, LIU Y, et al.CuO nanosheets grown on cupper foil as the catalyst for H2O2 electroreduction in alkaline medium.International Journal of Hydrogen Energy, 2012, 37(18): 13611-13615. |
[22] | DUAN D H, YOU X, LIANG J W, et al.Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells.Electrochimica Acta, 2015, 176: 1126-1135. |
[23] | PAN Y, ZHANG F, WU K, et al.Carbon supported palladium-iron nanoparticles with uniform alloy structure as methanol-tolerant electrocatalyst for oxygen reduction reaction.International Journal of Hydrogen Energy, 2012, 37(4): 2993-3000. |
[24] | LIAO M Y, HU Q, ZHENG J B, et al.Pd decorated Fe/C nanocatalyst for formic acid electrooxidation.Electrochimica Acta, 2013, 111: 504-509. |
[25] | NIU Y L, HUANG X Q, HU W H.Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis.Journal of Power Sources, 2016, 332: 305-311. |
[26] | JIANG H, FENG L Y, ZHU H, et al.Effect of adding Fe on the performances of Pd/C catalyst. Journal of Inorganic Materials, 2008, 23(4): 847-850. |
[27] | GARRIDORAMIREZ E G, MARCO J F, ESCALONA N, et al.Preparation and characterization of bimetallic Fe-Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction.Microporous and Mesoporous Materials, 2016, 225: 303-311. |
[28] | YAO J, YAO Y F.Experimental study of characteristics of bimetallic Pt-Fe nano-particle fuel cell electrocatalyst.Renewable Energy, 2015, 81: 182-196. |
[29] | SUN L M, ZHANG S S, BAO W Y G, et al..Catalytic properties of Pd nanoparticles supported on Cu2O microspheres for hydrogen peroxide electroreduction.RSC Advances, 2015, 5: 53320. |
[1] | BAI Jiawei, YANG Jing, LÜ Zhenfei, TANG Xiaodong. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43-48. |
[2] | WANG Donghai,HOU Wentao,LI Na,LI Dongzhen,XU Xiaodong,XU Jun,WANG Qingguo,TANG Huili. Defects and Optical Property of Single-crystal Sapphire Fibers Grown by Edge-defined Film-fed Growth Method [J]. Journal of Inorganic Materials, 2020, 35(9): 1053-1058. |
[3] | ZHU Zhengwang,FENG Rui,LIU Yang,ZHANG Yang,XIE Wenhan,DONG Lijie. Preparation and Property of CoFe2O4 Nanofibers with Fishbone-like Structure [J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016. |
[4] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[5] | CHEN Yun, WANG Xusheng, LI Yanxia, YAO Xi. Dynamic Mechanical Analysis in the Investigation on Ferroelectrics [J]. Journal of Inorganic Materials, 2020, 35(8): 857-866. |
[6] | ZHANG Xiuyu,CHEN Xiaofei,WANG Hao,GUO Xun,XUE Jianming. Molecular Dynamics Analysis of Chemical Disorders Induced by Irradiated Point Defects in 6H-SiC [J]. Journal of Inorganic Materials, 2020, 35(8): 889-894. |
[7] | WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2020, 35(7): 781-788. |
[8] | ZHANG Yiqing,ZHANG Shujuan,WAN Zhengrui,MO Han,WANG Niangui,ZHOU Liqun. RuFe Nanoparticles Modified Sheet-like BiVO4 : High-efficient Synergistic Catalyst for Ammonia Borane Hydrolytic Dehydrogenation [J]. Journal of Inorganic Materials, 2020, 35(7): 809-816. |
[9] | YU Ying, DU Hongliang, YANG Zetian, JIN Li, QU Shaobo. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges [J]. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[10] | ZHANG Zhigang,LU Xiaotong,LIU Jinli. NiFe2O4 Ceramic U-shaped Sleeve Prepared by Slip Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2020, 35(6): 661-668. |
[11] | ZHOU Xiong, FANG Lizhi, HUANG Shuangwu, XIA Haiping, HU Jianxu, ZHANG Jianli, CHEN Baojiu. Ultraviolet and Near-infrared Luminescence of Ce 3+/Yb 3+ Co-doping LiLuF4 Single Crystal [J]. Journal of Inorganic Materials, 2020, 35(5): 556-560. |
[12] | HUANG Xiubing, WANG Peng, TAO Jinzhang, XI Zuoshuai. CeO2 Modified Mn-Fe-O Composites and their Catalytic Performance for NH3-SCR of NO [J]. Journal of Inorganic Materials, 2020, 35(5): 573-580. |
[13] | WANG Jianing, JIN Jun, WEN Zhaoyin. Application of Separators Modified by Carbon Nanospheres Enriched with α-MoC1-x Nanocrystalline in Lithium Sulfur Batteries [J]. Journal of Inorganic Materials, 2020, 35(5): 532-540. |
[14] | WU Si,MEI Lei,HU Kong-Qiu,CHAI Zhi-Fang,NIE Chang-Ming,SHI Wei-Qun. pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers [J]. Journal of Inorganic Materials, 2020, 35(2): 243-249. |
[15] | ZHANG Tong,LI Zi-Juan,GUO Ze-Kun,TIAN Yan,LIN Hao-Jian,XU Ning-Sheng,CHEN Jun,DENG Shao-Zhi,LIU Fei. Single Crystalline SmB6 Nanostructure Arrays: Controllable Synthesis and Field Emission Property [J]. Journal of Inorganic Materials, 2020, 35(2): 199-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||