Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 704-710.DOI: 10.15541/jim20240549
• RESEARCH LETTER • Previous Articles Next Articles
YIN Changzhi1,2(), CHENG Mingfei1,2, LEI Weicheng1,2, CAI Yiyang1,2, SONG Xiaoqiang1,2, FU Ming1,2, LÜ Wenzhong1,2, LEI Wen1,2(
)
Received:
2024-12-31
Revised:
2025-02-26
Published:
2025-06-20
Online:
2025-03-06
Contact:
LEI Wen, professor. E-mail: wenlei@mail.hust.edu.cnAbout author:
YIN Changzhi (1994-), male, PhD candidate. E-mail: ychangzhi@163.com
Supported by:
CLC Number:
YIN Changzhi, CHENG Mingfei, LEI Weicheng, CAI Yiyang, SONG Xiaoqiang, FU Ming, LÜ Wenzhong, LEI Wen. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic[J]. Journal of Inorganic Materials, 2025, 40(6): 704-710.
Fig. 5 Densities and microwave dielectric properties of SrAl2-xGaxSi2O8 ceramics as a function of x (a) Density; (b) Permittivity; (c) Q×f and packing fraction; (d) τf
Fig. 6 (a) XRD patterns of 0.85SrAl0.4Ga1.6Si2O8+0.15CaTiO3 ceramic sintered at 1280 ℃; (b) SrAl0.4Ga1.6Si2O8+4% (in mass) LiF cofired with 20% (in mass) Ag at 940 ℃
y | εr | Q×f/GHz | τf/(×10-6, ℃-1) |
---|---|---|---|
0.03 | 6.1 | 50300 | -31.6 |
0.06 | 6.3 | 49800 | -24.4 |
0.09 | 6.5 | 49400 | -12.8 |
0.12 | 6.7 | 48900 | -5.7 |
0.15 | 7.0 | 48400 | +3.7 |
Table 1 Microwave dielectric properties of (1-y)SrAl0.4Ga1.6Si2O8 + yCaTiO3 ceramics sintered at their optimum temperature
y | εr | Q×f/GHz | τf/(×10-6, ℃-1) |
---|---|---|---|
0.03 | 6.1 | 50300 | -31.6 |
0.06 | 6.3 | 49800 | -24.4 |
0.09 | 6.5 | 49400 | -12.8 |
0.12 | 6.7 | 48900 | -5.7 |
0.15 | 7.0 | 48400 | +3.7 |
[1] | SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties. International Materials Reviews, 2015, 60(7): 392. |
[2] | LI Q Q, TAN J, WU Z C, et al. Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band. Carbon, 2023, 201: 150. |
[3] | TIAN H R, ZHANG X H, ZHANG Z D, et al. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/ millimeter-wave communication. Journal of Advanced Ceramics, 2024, 13(5): 602. |
[4] | ZHOU D, PANG L X, WANG D W, et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. Journal of Materials Chemistry C, 2017, 5(38): 10094. |
[5] | HUANG L, DING S H, ZHANG X Y, et al. Structure and microwave dielectric property of BaAl2Si2O8 with Li2O-B2O3-SiO2 glass addition. Journal of Inorganic Materials, 2019, 34(10): 1091. |
[6] | LOU W C, MAO M M, SONG K X, et al. Low permittivity cordierite- based microwave dielectric ceramics for 5G/6G telecommunications. Journal of the European Ceramic Society, 2022, 42(6): 2820. |
[7] | ULLAH A, LIU H X, HAO H, et al. Influence of TiO2 additive on sintering temperature and microwave dielectric properties of Mg0.90Ni0.1SiO3 ceramics. Journal of the European Ceramic Society, 2017, 37(9): 3045. |
[8] | SHANNON R D, ROSSMAN G R. Dielectric constants of silicate garnets and the oxide additivity rule. American Mineralogist, 1992, 77(1/2): 94. |
[9] | SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics, 1993, 73(1): 348. |
[10] | YIN C Z, DU K, ZOU Z Y, et al. Design and fabrication of a C-band patch antenna using novel low permittivity SrGa2Si2O8 microwave dielectric ceramic. Journal of the European Ceramic Society, 2023, 43(14): 6091. |
[11] | TIAN H R, ZHENG J J, LIU L T, et al. Structure characteristics and microwave dielectric properties of Pr2(Zr1-xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. Journal of Materials Science & Technology, 2022, 116(20): 121. |
[12] | YIN C Z, DU K, SONG X Q, et al. A novel low permittivity microwave dielectric ceramic Sr2Ga2SiO7 for application in patch antenna. Journal of the American Ceramic Society, 2023, 106(7): 4284. |
[13] | DOSLER U, KRZMANCM M, JANCAR B, et al. A high-Q microwave dielectric material based on Mg3B2O6. Journal of the American Ceramic Society, 2010, 93(11): 3788. |
[14] | ZHOU D, PANG L X, WANG D W. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustainable Chemistry Engineering, 2018, 6(8): 11138. |
[15] | LIU B, HU C C, HUANG Y H, et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity. Journal of Alloys and Compounds, 2019, 791: 1033. |
[16] | BANSAL N P, DRUMMOND C H. Kinetics of hexacelsian-to- celsian phase transformation in SrAl2Si2O8. Journal of the American Ceramic Society, 1993, 76(5): 1321. |
[17] | HAKK B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Transactions on Microwave Theory and Techniques, 1960, 8(4): 402. |
[18] | LI C C, XIANG H C, XU M Y, et al. Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. Journal of the European Ceramic Society, 2018, 38(4): 1524. |
[19] | XING Z, YIN C Z, YU Z Z, et al. Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies. Ceramics International, 2020, 46(14): 22460. |
[20] | BAO J, ZHANG Y P, KIMURA H, et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics. Journal of the Advanced Ceramics, 2023, 12(1): 82. |
[21] | YOON S H, KIM D, CHO S, et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society, 2006, 26(10/11): 2051. |
[22] | SONG X Q, DU K, LI J, et al. Crystal structures and microwave dielectric properties of novel low-permittivity Ba1-xSrxZnSi3O8 ceramics. Materials Research Bulletin, 2019, 112: 178. |
[23] | SONG X Q, DU K, ZHANG X Z, et al. Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9ceramics. Journal of Alloys and Compounds, 2018, 750: 996. |
[24] | XIONG S Y, MO C, ZHU X W, et al. Low-temperature sintering of LiBxAl1-xSi2O6 microwave dielectric ceramics with ultra-low permittivity. Journal of Inorganic Materials, 2025, 40(5): 536. |
[25] | KIM E S, CHUNB S, FREER R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. Journal of the European Ceramic Society, 2010, 30(7): 1731. |
[26] | KIM E S, KIM S H. Effects of structural characteristics on microwave dielectric properties of (1-x)CaWO4-xLaNbO4 ceramics. Journal of Electroceramics, 2006, 17: 471. |
[27] | LI C C, YIN C Z, KHALIQ J, et al. Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances. ACS Sustainable Chemistry Engineering, 2021, 9: 14461. |
[28] | WANG X Y, LIU T, CAO Z K, et al. Lattice vibrational characteristics and structure-property relationships of Ca(Mg1/2W1/2)O3 microwave dielectric ceramics with different sintering temperatures. Ceramics International, 2022, 48(1): 1415. |
[29] | GUO J, ZHOU D, WANG H, et al. Microwave dielectric properties of (1-x)ZnMoO4-xTiO2 composite ceramics. Journal of Alloys and Compounds, 2011, 509: 5863. |
[30] | AN Z F, LV J Q, WANG X Y, et al. Effects of LiF additive on crystal structures, lattice vibrational characteristics and dielectric properties of CaWO4 microwave dielectric ceramics for LTCC applications. Ceramics International, 2022, 48(20): 29929. |
[31] | YIN C Z, ZOU Z Y, CHENG M F, et al. Microwave dielectric properties of CaB2O4-CaSiO3 system for LTCC applications. Crystals, 2023, 13(5): 790. |
[1] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[2] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[3] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: An Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[4] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[5] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[6] | HUANG Zipeng, JIA Wenxiao, LI Lingxia. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 647-655. |
[7] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[8] | CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites [J]. Journal of Inorganic Materials, 2023, 38(2): 155-162. |
[9] | YE Fen, JIANG Xiangping, CHEN Yunjing, HUANG Xiaokun, ZENG Renfen, CHEN Chao, NIE Xin, CHENG Hao. Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 499-506. |
[10] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[11] | ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 379-385. |
[12] | BAI Jiawei, YANG Jing, LÜ Zhenfei, TANG Xiaodong. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43-48. |
[13] | WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2020, 35(4): 431-438. |
[14] | Hui GAN, Chuan-Bin WANG, Qiang SHEN, Lian-Meng ZHANG. Preparation of La2NiMnO6 Double-perovskite Ceramics by Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2019, 34(5): 541-545. |
[15] | HUANG Long, DING Shi-Hua, ZHANG Xiao-Yun, YAN Xin-Kan, LI Chao, ZHU Hui. Structure and Microwave Dielectric Property of BaAl2Si2O8 with Li2O-B2O3-SiO2 Glass Addition [J]. Journal of Inorganic Materials, 2019, 34(10): 1091-1096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||