Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (6): 697-703.DOI: 10.15541/jim20240482
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Wenyuan1,2(), XU Jianan1,2, DENG Han'ao1, CHANG Aimin1, ZHANG Bo1(
)
Received:
2024-11-13
Revised:
2024-12-31
Published:
2025-06-20
Online:
2025-01-09
Contact:
ZHANG Bo, professor. E-mail: zhangbocas@ms.xjb.ac.cnAbout author:
LI Wenyuan (1999-), male, PhD candidate. E-mail: liwenyuan22@mails.ucas.ac.cn
Supported by:
CLC Number:
LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics[J]. Journal of Inorganic Materials, 2025, 40(6): 697-703.
Fig. 2 SEM images of LTV-x ceramics and EDS mappings of area A (a-e) SEM images of LTV-x ceramics (x=(a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4); (f) Variation of grain size as a function of composition; (g-j) EDS mappings of area A in (d)
Fig. 3 TEM and HRTEM characterizations of LTV-0.3 ceramics (a, b) TEM images; (a1, b1) SAED patterns corresponding to area 1 and 2; (a2, b2) HRTEM images of orthorhombic-phase LaTaO4 and monoclinic-phase LaVO4 corresponding to area Ⅰ and Ⅱ
Fig. 5 Microwave dielectric properties of LTV-x ceramics sintered at 1400 ℃ (a) Permittivity (εr: measured; εtheo: calculated by Shannon’s additive rule and Clausius-Mossotti relation; εcor: modified by Bosman and Havinga correction); (b) Q×f, relative density, and packing fraction; (c) Evolution of τf as a functions of x for LTV-x ceramics
x | Atom | Atom position | Mult | Occupancy | Refining reliability factor | Volume/Å3 | |||
---|---|---|---|---|---|---|---|---|---|
x | y | z | Rwp/% | Rp/% | |||||
0 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 8.45 | 6.18 | 326.04 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 1.0000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.1 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 7.54 | 5.71 | 325.41 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.9000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.1000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.2 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 8.62 | 6.42 | 324.98 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.8000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.2000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.3 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 7.39 | 5.97 | 323.85 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.7000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.3000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.4 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 9.27 | 7.24 | 323.61 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.6000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.4000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 |
Table S1 Lattice parameters and reliable factors of LTV-x ceramics obtained by the Rietveld profile refinement method
x | Atom | Atom position | Mult | Occupancy | Refining reliability factor | Volume/Å3 | |||
---|---|---|---|---|---|---|---|---|---|
x | y | z | Rwp/% | Rp/% | |||||
0 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 8.45 | 6.18 | 326.04 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 1.0000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.1 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 7.54 | 5.71 | 325.41 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.9000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.1000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.2 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 8.62 | 6.42 | 324.98 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.8000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.2000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.3 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 7.39 | 5.97 | 323.85 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.7000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.3000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 | ||||
0.4 | La1 | 0.0000 | 0.6292 | 0.2500 | 4 | 1.0000 | 9.27 | 7.24 | 323.61 |
Ta1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.6000 | ||||
V1 | 0.0000 | 0.1036 | 0.2500 | 4 | 0.4000 | ||||
O1 | 0.1460 | 0.2042 | 0.1572 | 8 | 1.0000 | ||||
O2 | 0.2624 | 0.4663 | 0.3170 | 8 | 1.0000 |
[1] | LI J, WANG Z, GUO Y, et al. Influences of substituting of (Ni1/3Nb2/3)4+ for Ti4+on the phase compositions, microstructures, and dielectric properties of Li2Zn[Ti1-x(Ni1/3Nb2/3)x]3O8(0≤x≤0.3) microwave ceramics. J. Adv. Ceram., 2023, 12(4): 760. |
[2] | FENG C, ZHOU X, TAO B, et al. Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1-x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency. J. Adv. Ceram., 2022, 11(3): 392. |
[3] | WANG J, CHONG X Y, ZHOU R, et al. Microstructure and thermal properties of RETaO4 (RE=Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scr. Mater., 2017, 126: 24. |
[4] | CHEN L, JIANG Y H, CHONG X Y, et al. Synthesis and thermophysical properties of RETa3O9 (RE=Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J. Am. Ceram. Soc., 2018, 101: 1266. |
[5] | WU P, CHONG X Y, WU F S, et al. Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics. J. Eur. Ceram. Soc., 2020, 40(8): 3111. |
[6] | WANG G, ZHANG D N, HUANG X, et al. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics. J. Am. Ceram. Soc., 2020, 103(1): 214. |
[7] | LEE H J, HONG K S, KIM I T. Crystal structure and microwave dielectric properties of M(NbxTa1-x)2O6 solid solution (M=Mg or Zn). J. Mater. Res., 2011, 12: 1437. |
[8] | ZHANG P, ZHAO Y G, LIU J, et al. Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution. J. Alloys Compd., 2015, 649: 90. |
[9] | HAUGSRUD R, NORBY T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater., 2006, 5: 193. |
[10] | FORBES T Z, NYMAN M, RODRIGUEZ M A, et al. The energetics of lanthanum tantalate materials. J. Solid State Chem., 2010, 183: 2516. |
[11] | MACHIDA M, MURAKAMI S, KIJIMA T, et al. Photocatalytic property and electronic structure of lanthanide tantalates, LnTaO4 (Ln=La, Ce, Pr, Nd, and Sm). J. Phys. Chem. B, 2001, 105: 3289. |
[12] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., 1976, 32: 751. |
[13] | BOSMAN A J, HAVINGA E E. Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev., 1963, 129: 1593. |
[14] | SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides. Appl. Phys., 1993, 73: 348. |
[15] | HAKKI B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech., 1960, 8(4): 402. |
[16] | KIM D W, KWOND K, YOON S H, et al. Microwave dielectric properties of rare-earth ortho-niobates with ferroelasticity. J. Am. Ceram. Soc., 2006, 89(12): 3861. |
[17] | GUO D, ZHOU D, LI W B, et al. Phase evolution, crystal structure, and microwave dielectric properties of water-insoluble (1-x)LaNbO4-xLaVO4 (0≤x≤0.9) ceramics. Inorg. Chem., 2017, 56(15): 9321. |
[18] | BAO J, DU J L, LIU L T. A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature. Ceram. Int., 2021, 48: 784. |
[19] | LIAO Q W, LI L X, REN X, et al. New low-loss microwave dielectric material ZnTiNbTaO8. J. Am. Ceram. Soc., 2011, 94: 3237. |
[20] | WU F F, ZHOU D, DU C, et al. Temperature stable Sm(Nb1-xVx)O4 (0.0≤x≤0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C, 2021, 9: 9962. |
[21] | YANG M, ZOU H X, YANG H M, et al. Phase composition and microwave dielectric properties of NaSrB5+5xO9+7.5x composite ceramics. J. Eur. Ceram. Soc., 2023, 43(5): 1964. |
[22] | XIANG H C, FANG L, JIANG X W, et al. A novel temperature stable microwave dielectric ceramic with garnet structure: Sr2NaMg2V3O12. J. Am. Ceram. Soc., 2016, 99: 399. |
[23] | WANG Y, ZUO R Z, ZHANG C, et al. Low-temperature-fired ReVO4 (Re=La, Ce) microwave dielectric ceramics. J. Am. Ceram. Soc., 2015, 98(1): 1. |
[24] | KIM W S, KIM T H, KIM E S, et al. Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. Jpn. J. Appl. Phys., 1998, 37: 5367. |
[25] | CAO Y C, ZHANG L B, MEI H R, et al. Crystal structure, phonon characteristics, and dielectric properties of CaMgGe2O6: a novel diopside microwave dielectric ceramic. Ceram. Int., 2022, 48(6): 8783. |
[26] | DU K, YIN C Z, YANG J Q, et al. Crystal structure, far-infrared spectra, and microwave dielectric properties of bazirite-type BaZr(Si1-xGex)3O9 ceramics. Ceram. Int., 2022, 48(3): 3592. |
[1] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[2] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[3] | LIU Lin, FANG You-Wei, DENG Xin-Feng, ZHUANG Wen-Dong, TANG Bin, ZHANG Shu-Ren. Crystal Structures and Microwave Dielectric Properties of (Ba1-xSrx)La4Ti4O15 (x=0.8-0.95) Ceramics [J]. Journal of Inorganic Materials, 2012, 27(3): 281-284. |
[4] | WANG Nai-Gang,LUO Lan,CHEN Wei,ZHANG Gan-Cheng,GUI Jian-Fei. Crystallization and Microwave Dielectric Properties of MgO-Al2O3-SiO2-TiO2-CeO2 Glass-ceramics [J]. Journal of Inorganic Materials, 2003, 18(3): 547-552. |
[5] | LIAN Fang,XU Li-Hua,WANG Fu-Ming,LI Wen-Chao. A New Wet-Chemical Approach to Synthesis Ba(Mg1/3Ta2/3)O3 Nanometric Powder [J]. Journal of Inorganic Materials, 2002, 17(2): 247-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||