Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (9): 979-991.DOI: 10.15541/jim20240102
Special Issue: 【能源环境】化工催化(202506)
• REVIEW • Previous Articles Next Articles
YANG Xin1,2,3(), HAN Chunqiu2,4, CAO Yuehan2(
), HE Zhen2, ZHOU Ying1,2(
)
Received:
2024-03-05
Revised:
2024-04-07
Published:
2024-09-20
Online:
2024-04-19
Contact:
CAO Yuehan, associate professor. E-mail: yhcao419@163.com;About author:
YANG Xin (1999-), male, Master candidate. E-mail: yangxin9633@outlook.com
Supported by:
CLC Number:
YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides[J]. Journal of Inorganic Materials, 2024, 39(9): 979-991.
Catalyst | NH3 yield rate | Faraday efficiency, FE/% | Stability/h | Ref. |
---|---|---|---|---|
TiO2-x | 45.00 µmol·h-1·mg-1 | 85.00 | 16.00 | [ |
Ru/TiO2 | 35.35 µmol·h-1·cm-2 | >90.00 | 4.50 | [ |
Pd/TiO2 | 66.00 μmol·h-1·cm-2 | 92.00 | 12.00 | [ |
PdCu/TiO2-x | 322.70 μmol·h-1·cm-2 | 80.10 | 48.00 | [ |
Co-TiO2/TP | 1127.00 μmol·h-1·cm-2 | 98.20 | 24.00 | [ |
Fe2TiO5 | 0.73 mmol·h-1·mg-1 | 87.60 | 6.00 | [ |
ZnCr2O4 | 1197.65 μmol·h-1·mg-1 | 90.20 | 15.00 | [ |
Fe2O3 | 328.17 μmol·h-1·cm-2 | 69.80 | 5.00 | [ |
Fe3O4/SS | 596.76 μmol·h-1·cm-2 | 91.50 | 4.00 | [ |
Cu/Fe3O4 | 10.56 mmol·h-1·mg-1 | 100.0 | - | [ |
NiO4 | 1.83 mmol·h-1·mg-1 | 94.70 | 72.00 | [ |
Co3O4/NiO | 6.93 μmol·h-1·mg-1 | - | 3.00 | [ |
Cu/Cu2O | 219.80 μmol·h-1·cm-2 | 93.90 | 12.00 | [ |
Cu2O | 0.14 mmol·h-1·cm-2 | 99.80 | 20.00 | [ |
PdCu/Cu2O | 190.00 μmol·h-1·cm-2 | 94.30 | 12.00 | [ |
CoO NC/graphene | 25.63 mmol·h-1·mg-1 | >98.00 | 6.00 | [ |
Cu/Co3O4 | 1.11 mmol·h-1·cm-2 | 100.70 | 60.00 | [ |
S/Co3O4 | 174.20 μmol·h-1·mg-1 | 89.90 | 7.00 | [ |
Cu/MnOx | 1.72 mmol·h-1·mg-1 | 86.20 | 6.00 | [ |
CuO@MnO2/CF | 0.24 mmol·h-1·cm-2 | 94.90 | 10.00 | [ |
Table 1 Properties of metal oxides used in the study of eNitRR
Catalyst | NH3 yield rate | Faraday efficiency, FE/% | Stability/h | Ref. |
---|---|---|---|---|
TiO2-x | 45.00 µmol·h-1·mg-1 | 85.00 | 16.00 | [ |
Ru/TiO2 | 35.35 µmol·h-1·cm-2 | >90.00 | 4.50 | [ |
Pd/TiO2 | 66.00 μmol·h-1·cm-2 | 92.00 | 12.00 | [ |
PdCu/TiO2-x | 322.70 μmol·h-1·cm-2 | 80.10 | 48.00 | [ |
Co-TiO2/TP | 1127.00 μmol·h-1·cm-2 | 98.20 | 24.00 | [ |
Fe2TiO5 | 0.73 mmol·h-1·mg-1 | 87.60 | 6.00 | [ |
ZnCr2O4 | 1197.65 μmol·h-1·mg-1 | 90.20 | 15.00 | [ |
Fe2O3 | 328.17 μmol·h-1·cm-2 | 69.80 | 5.00 | [ |
Fe3O4/SS | 596.76 μmol·h-1·cm-2 | 91.50 | 4.00 | [ |
Cu/Fe3O4 | 10.56 mmol·h-1·mg-1 | 100.0 | - | [ |
NiO4 | 1.83 mmol·h-1·mg-1 | 94.70 | 72.00 | [ |
Co3O4/NiO | 6.93 μmol·h-1·mg-1 | - | 3.00 | [ |
Cu/Cu2O | 219.80 μmol·h-1·cm-2 | 93.90 | 12.00 | [ |
Cu2O | 0.14 mmol·h-1·cm-2 | 99.80 | 20.00 | [ |
PdCu/Cu2O | 190.00 μmol·h-1·cm-2 | 94.30 | 12.00 | [ |
CoO NC/graphene | 25.63 mmol·h-1·mg-1 | >98.00 | 6.00 | [ |
Cu/Co3O4 | 1.11 mmol·h-1·cm-2 | 100.70 | 60.00 | [ |
S/Co3O4 | 174.20 μmol·h-1·mg-1 | 89.90 | 7.00 | [ |
Cu/MnOx | 1.72 mmol·h-1·mg-1 | 86.20 | 6.00 | [ |
CuO@MnO2/CF | 0.24 mmol·h-1·cm-2 | 94.90 | 10.00 | [ |
Fig. 3 Catalytic performance of Cu/Cu2O NWAs[63] (a) Nitrate conversion efficiency and FE at different voltages; (b) Nuclear magnetic resonance (NMR) spectra of nitrogen sources; (c) Raman spectra; (d) In-situ mass spectrometry spectra; (e) Free energy image
Fig. 4 Characterization of catalytic performance of Cu/Cu2O[51] (a) FE of NH3 and NO2− at different potentials; (b) Corresponding NH3 generation rates and bias current densities at different potentials; (c) Potential-induced electrocatalytic reconstruction of Cu2O cube; (d) Free energy diagram
Fig. 5 Characterization of catalytic performance of Fe3O4/SS[48] (a) Current density of different product fractions; (b) Ammonia-producing activity of Fe3O4/SS; (c) Cyclic test of Fe3O4/SS at -0.50 V; (d) Free energy diagram
Fig. 6 Characterization of catalytic performance of Cu-Fe3O4[49] (a) NH3 yield and FE of Cu-Fe3O4; (b) Comparison of ammonia yields of different catalytic materials; (c) Free energy diagram
Fig. 7 Characterization of catalytic performance of TiO2-x[40] (a) NO3- conversion rates and NH3 FE of TiO2-x; (b) TiO2-x ammonia production cycle test; (c) Differential electrocatalytic mass spectra; (d, e) Free energy diagrams of (d) TiO2 and (e) TiO2-x
Fig. 8 Characterization of catalytic performance of PdCu NPs/TiO2-x[43] (a) Ammonia production activity and FE of different materials; (b) Product selectivity of different materials; (c, d) Partial crystal orbital layouts of (c) TiO2-x and (d) PdCu NPs/TiO2-x; (e) Density of states diagram; (f) Schematic diagram of catalytic kinetics of the d band center
[1] | FU X, ZHANG J, KANG Y. Recent advances and challenges of electrochemical ammonia synthesis. Chem Catalysis, 2022, 2(10): 2590. |
[2] | QING G, GHAZFAR R, JACKOWSKI S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437. |
[3] | BRUCH Q J, CONNOR G P, MCMILLION N D, et al. Considering electrocatalytic ammonia synthesis via bimetallic dinitrogen cleavage. ACS Catalysis, 2020, 10(19): 10826. |
[4] | MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186. |
[5] | JIANG L, FU X. An ammonia-hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China. Engineering, 2021, 7(12): 1688. |
[6] | ZHENG J, JIANG L, LYU Y, et al. Green synthesis of nitrogen-to- ammonia fixation: past, present, and future. Energy & Environmental Materials, 2022, 5(2): 452. |
[7] |
OUYANG L, LIANG J, LUO Y, et al. Recent advances in electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2023, 50: 6.
DOI |
[8] | CHEN W, XU Y, LIU J, et al. Recent developments in Ti-based nanocatalysts for electrochemical nitrate-to-ammonia conversion. Inorganic Chemistry Frontiers, 2023, 10(17): 4901. |
[9] | CHEN W, YANG X, CHEN Z, et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Advanced Functional Materials, 2023, 33(29): 2300512. |
[10] |
FU X, PEDERSEN J B, ZHOU Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707.
DOI PMID |
[11] | SONG W, YUE L, FAN X, et al. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorganic Chemistry Frontiers, 2023, 10(12): 3489. |
[12] | GUO H, YANG P, YANG Y, et al. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, 2023, 20(17): 2309007. |
[13] | REICHLE S, FELDERHOFF M, SCHÜTH F. Mechanocatalytic room-temperature synthesis of ammonia from its elements down to atmospheric pressure. Angewandte Chemie International Edition, 2021, 60(50): 26385. |
[14] |
ZOU X, XIE J, WANG C, et al. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: investigations and challenges. Chinese Chemical Letters, 2023, 34(6): 107908.
DOI |
[15] | CHEN G F, YUAN Y, JIANG H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605. |
[16] | HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 2012, 55: 146. |
[17] | XU H, MA Y, CHEN J, et al. Electrocatalytic reduction of nitrate a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51(7): 2710. |
[18] | GAO W, XIE K, XIE J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Advanced Materials, 2023, 35(19): 2202952. |
[19] | WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12: 2870. |
[20] | ZHENG W, ZHU L, YAN Z, et al. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater. Environmental Science & Technology, 2021, 55(19): 13231. |
[21] | ZHANG X, WANG Y, LIU C, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 2021, 403: 126269. |
[22] | DU H, LUO H, JIANG M, et al. A review of activating lattice oxygen of metal oxides for catalytic reactions: reaction mechanisms, modulation strategies of activity and their practical applications. Applied Catalysis A: General, 2023, 664: 119348. |
[23] | LING T, ZHANG T, GE B, et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Advanced Materials, 2019, 31(16): 1807771. |
[24] | XU Y, YANG H, CHANG X, et al. Introduction to electrocatalytic kinetics. Acta Physico-Chimica Sinica, 2023, 39(4): 2210025. |
[25] |
TANG M, TONG Q, LI Y, et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles. Chinese Chemical Letters, 2023, 34(12): 108410.
DOI |
[26] | HAN S, LI H, LI T, et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nature Catalysis, 2023, 6(5): 402. |
[27] | LIAO P, KANG J, XIANG R, et al. Electrocatalytic systems for NOx valorization in organonitrogen synthesis. Angewandte Chemie International Edition, 2024, 63(3): e202311752. |
[28] | YIN H, CHEN Z, XIONG S, et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catalysis, 2021, 1(5): 1088. |
[29] | DU X, HUANG J, ZHANG J, et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angewandte Chemie International Edition, 2019, 58(14): 4484. |
[30] |
ZHANG Z, FENG C, WANG D, et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13: 2473.
DOI PMID |
[31] | FENG C, ZHANG Z, WANG D, et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. Journal of the American Chemical Society, 2022, 144(21): 9271. |
[32] | ZHANG Y, ZHENG H, ZHOU K, et al. Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia. Advanced Materials, 2023, 35(10): 2209855. |
[33] | REN J T, CHEN L, WANG H Y, et al. Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy & Environmental Science, 2024, 17(1): 49. |
[34] | OGAWA N, IKEDA S. On the electrochemical reduction of nitrate ion in the presence of various metal ions. Analytical Sciences, 1991, 7: 1681. |
[35] | BOESE S W, ARCHER V S. Electrochemical reduction of nitrate in the presence of ytterbium(III). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 273. |
[36] | YU J, YONG X, CAO A, et al. Bi-layer single atom catalysts boosted nitrate-to-ammonia electroreduction with high activity and selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015. |
[37] | JING Q, MEI Z, SHENG X, et al. 3d orbital electron engineering in oxygen electrocatalyst for zinc-air batteries. Chemical Engineering Journal, 2023, 462: 142321. |
[38] |
CHEN H, WU Q, WANG Y, et al. d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chemical Communications, 2022, 58(56): 7730.
DOI PMID |
[39] | MOLTVED K A, KEPP K P. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions. Journal of Physical Chemistry C, 2019, 123(30): 18432. |
[40] | JIA R, WANG Y, WANG C, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catalysis, 2020, 10(6): 3533. |
[41] | QIU W, XIE M, WANG P, et al. Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small, 2023, 19(30): 2300437. |
[42] | GUO Y, ZHANG R, ZHANG S, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy & Environmental Science, 2021, 14(7): 3938. |
[43] | WU H, GUO H, ZHANG F, et al. Enhanced localized electron density from PdCu nanoparticle loading on a defective TiO2 support for selective nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 2023, 11(41): 22466. |
[44] | ZHAO D, MA C, LI J, et al. Direct eight-electron NO3- to NH3 conversion: using a Co-doped TiO2 nanoribbon array as a high- efficiency electrocatalyst. Inorganic Chemistry Frontiers, 2022, 9(24): 6412. |
[45] | DU H, GUO H, WANG K, et al. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies. Angewandte Chemie International Edition, 2023, 62(5): e202215782. |
[46] | DONG S, NIU A, WANG K, et al. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Applied Catalysis B: Environmental, 2023, 333: 122772. |
[47] | LI T, TANG C, GUO H, et al. In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765. |
[48] | FAN X, XIE L, LIANG J, et al. In situ grown Fe3O4 particle on stainless steel: a highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15(4): 3050. |
[49] |
WANG J, WANG Y, CAI C, et al. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Letters, 2023, 23(5): 1897.
DOI PMID |
[50] | WANG Y, LIU C, ZHANG B, et al. Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi- dehydrogenation. Science China Materials, 2020, 63(12): 2530. |
[51] | ZHOU N, WANG Z, ZHANG N, et al. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catalysis, 2023, 13(11): 7529. |
[52] | XIAO L, DAI W, MOU S, et al. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy & Environmental Science, 2023, 16(6): 2696. |
[53] | KANI N C, NGUYEN N H L, MARKEL K, et al. Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia. Advanced Energy Materials, 2023, 13(17): 2204236. |
[54] | CHEN W, CHEN Z, HUANG Z, et al. Modulating the valence electronic structure of Co3O4 to improve catalytic activity of electrochemical nitrate-to-ammonia conversion. Science China Materials, 2023, 66(10): 3901. |
[55] | NIU Z, FAN S, LI X, et al. Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chemical Engineering Journal, 2023, 451: 138890. |
[56] | CUI Y, DONG A, ZHOU Y, et al. Interfacially engineered nanoporous Cu/MnOx hybrids for highly efficient electrochemical ammonia synthesis via nitrate reduction. Small, 2023, 19(17): 2207661. |
[57] | XU Y, SHENG Y, WANG M, et al. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core-shell hierarchical nanoarrays. Journal of Materials Chemistry A, 2022, 10(32): 16883. |
[58] | CAO Y, GUO R, MA M, et al. Effects of electron density variation of active sites in CO2 activation and photoreduction: a review. Acta Physico-Chimica Sinica, 2024, 40(1): 2303029. |
[59] | ZHANG Z, BIAN L, TIAN H, et al. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small, 2022, 18(18): 2107450. |
[60] | WANG Y, QIN Y, LI W, et al. Controllable NO release for catheter antibacteria from nitrite electroreduction over the Cu-MOF. Transactions of Tianjin University, 2023, 29(4): 275. |
[61] | POLO-GARZON F, BAO Z, ZHANG X, et al. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catalysis, 2019, 9(6): 5692. |
[62] | WANG C, LIU Z, LI C, et al. Progress on electrocatalytic reduction of nitrate on copper-based catalysts. Chinese Science Bulletin, 2021, 66(34): 4411. |
[63] | WANG Y, ZHOU W, JIA R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angewandte Chemie International Edition, 2020, 59(13): 5350. |
[64] | ZHANG S, LI M, LI J, et al. High-ammonia selective metal- organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proceedings of the National Academy of Sciences, 2022, 119(6): e2115504119. |
[65] | WANG Z, WEN B, HAO Q, et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. Journal of the American Chemical Society, 2015, 137(28): 9146. |
[66] | JIA X, LI J Y, DING S H, et al. Synergy effect of Pd nanoparticles and oxygen vacancies for enhancing TiO2 photocatalytic CO2 reduction. Journal of Inorganic Materials, 2023, 38(11): 1301. |
[67] | WAN J, CHEN W, JIA C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30(11): 1705369. |
[68] | FENG T, LI F, HU X, et al. Selective electroreduction of nitrate to ammonia via NbWO6 perovskite nanosheets with oxygen vacancy. Chinese Chemical Letters, 2023, 34(5): 107862. |
[69] | FAN X, ZHAO D, DENG Z, et al. Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small, 2023, 19(17): 2208036. |
[70] | ZHAO X E, LI Z, GAO S, et al. CoS2@TiO2 nanoarray: a heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chemical Communications, 2022, 58(93): 12995. |
[71] | HE X, LI J, LI R, et al. Ambient ammonia synthesis via nitrate electroreduction in neutral media on Fe3O4 nanoparticles-decorated TiO2 nanoribbon array. Inorganic Chemistry, 2023, 62(1): 25. |
[72] | ZHAO Q, SONG A, DING S, et al. Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Advanced Materials, 2020, 32(50): 2002450. |
[73] | WANG P, JIN Z, CHEN N, et al. Theoretical investigation of Mo doped α-MnO2 electrocatalytic oxygen evolution reaction. Journal of Inorganic Materials, 2022, 37(5): 541. |
[74] | ZHANG X, WU D, LIU X, et al. Efficient electrocatalytic chlorine evolution under neutral seawater conditions enabled by highly dispersed Co3O4 catalysts on porous carbon. Applied Catalysis B: Environmental, 2023, 330: 122594. |
[75] |
WU J, WANG X, ZHENG W, et al. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction. Journal of the American Chemical Society, 2022, 144(41): 19163.
DOI PMID |
[76] | HU Z, HAO L, QUAN F, et al. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 2022, 12(2): 436. |
[77] | LU D, LIU T, HAN J, et al. Yolk-shell composite oxides with binuclear Co(II) sites toward low-overpotential nitrate reduction to ammonia. Chemical Engineering Journal, 2023, 477: 146896. |
[78] | PARASHTEKAR A, BOURGEOIS L, TATIPARTI S S V. Grain boundary segregation of nickel vacancies and space charge zone formation in NiO through interactions among Ni2+, O2-, and Ni3+. Materials Letters, 2023, 349: 134743. |
[79] |
LI B, ZHANG Q, XIAO J, et al. Iron-doping enhanced basic nickel carbonate for moisture resistance and catalytic performance of ozone decomposition. Journal of Inorganic Materials, 2022, 37(1): 45.
DOI |
[80] | ZHANG R, WANG Y, OU B, et al. α-Ni(OH)2 surface hydroxyls synergize Ni3+ sites for catalytic formaldehyde oxidation. Journal of Inorganic Materials, 2023, 38(10): 1216. |
[81] | ZHU H, TANG Y, WANG J J, et al. Accelerating electrosynthesis of ammonia from nitrates using coupled NiO/Cu nanocomposites. Chemical Communications, 2024, 60(16): 2184. |
[82] | WANG Y, LI H, ZHOU W, et al. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angewandte Chemie International Edition, 2022, 61(19): e202202604. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||