Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (7): 828-834.DOI: 10.15541/jim20230578
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
XIAO Zichen1,2,3(), HE Shihao1,2,3, QIU Chengyuan1,2,3, DENG Pan1,2,3, ZHANG Wei1,2,3, DAI Weideren1,2,3, GOU Yanzhuo1,2,3, LI Jinhua1,2,3, YOU Jun1,2,3, WANG Xianbao1,2,3(
), LIN Liangyou1,2,3(
)
Received:
2023-12-14
Revised:
2024-02-27
Published:
2024-07-20
Online:
2024-03-08
Contact:
WANG Xianbao, professor. E-mail: wxb@hubu.edu.cn;About author:
XIAO Zichen (1999-), female, Master candidate. E-mail: zichen_xiao@qq.com
Supported by:
CLC Number:
XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(7): 828-834.
Fig. 1 (a) DLS spectra of precursors, (b) DMF contact angles, and (c, d) AFM topographical images of SnO2 and SnO2-DC films Colorful figures are available on website
Fig. 2 Photoelectric properties of SnO2 and SnO2-DC films (a) Sn3d and (b) O1s XPS spectra of SnO2 and SnO2-DC films; UPS spectra of (c) SnO2 and (d) SnO2-DC films; Tauc plots of (e) SnO2 and (f) SnO2-DC films; Colorful figures are available on website
Fig. 3 Energy levels, interface transport, and carrier recombination characteristics of films (a) Energy diagram of FTO, SnO2, SnO2-DC, perovskite and spiro-OMeTAD; (b) Conductivities of SnO2 and SnO2-DC films; (c) PL and (d) TRPL spectra of SnO2 and SnO2-DC films; Colorful figures are available on website
ETL | A1/% | τ1/ns | A2/% | τ2/ns | τavg/ns |
---|---|---|---|---|---|
SnO2 | 0.30 | 24.36 | 0.57 | 268.80 | 9.31 |
SnO2-DC | 0.27 | 22.11 | 0.56 | 273.59 | 8.60 |
Table 1 Fitting parameters of TRPL
ETL | A1/% | τ1/ns | A2/% | τ2/ns | τavg/ns |
---|---|---|---|---|---|
SnO2 | 0.30 | 24.36 | 0.57 | 268.80 | 9.31 |
SnO2-DC | 0.27 | 22.11 | 0.56 | 273.59 | 8.60 |
Fig. 4 Photovoltaic performance of PSC based on SnO2 and SnO2-DC (a) Schematic structure; (b) Statistical distributions of PCE; (c) J-V curves; (d) EQE spectra; Colorful figures are available on website
ETL | PCE/% | FF/% | Voc/V | Jsc/(mA·cm-2) | PCEmax/% | PCEmin/% | PCEmean/% |
---|---|---|---|---|---|---|---|
SnO2 | 14.74±1.43 | 69.77±4.47 | 1.03±0.02 | 20.46±0.84 | 18.13 | 12.45 | 14.74292 |
SnO2-DC | 16.37±1.55 | 72.55±4.20 | 1.05±0.02 | 21.38±0.68 | 19.11 | 14.33 | 16.37923 |
Table S1 Device performance parameters extracted from Fig. 4(d)
ETL | PCE/% | FF/% | Voc/V | Jsc/(mA·cm-2) | PCEmax/% | PCEmin/% | PCEmean/% |
---|---|---|---|---|---|---|---|
SnO2 | 14.74±1.43 | 69.77±4.47 | 1.03±0.02 | 20.46±0.84 | 18.13 | 12.45 | 14.74292 |
SnO2-DC | 16.37±1.55 | 72.55±4.20 | 1.05±0.02 | 21.38±0.68 | 19.11 | 14.33 | 16.37923 |
ETL | Scan direction | PCE/% | FF/% | Voc/V | Jsc/(mA·cm-2) | HI |
---|---|---|---|---|---|---|
SnO2 | Reverse | 17.08 | 74.5 | 1051.9 | 21.80 | 0.079 |
Forward | 15.73 | 71.0 | 1036.9 | 21.36 | ||
SnO2-DC | Reverse | 18.31 | 77.1 | 1048.4 | 22.64 | 0.004 |
Forward | 18.23 | 75.1 | 1068.4 | 22.71 |
Table S2 Photovoltaic parameters of PSCs measured under reverse or forward scan
ETL | Scan direction | PCE/% | FF/% | Voc/V | Jsc/(mA·cm-2) | HI |
---|---|---|---|---|---|---|
SnO2 | Reverse | 17.08 | 74.5 | 1051.9 | 21.80 | 0.079 |
Forward | 15.73 | 71.0 | 1036.9 | 21.36 | ||
SnO2-DC | Reverse | 18.31 | 77.1 | 1048.4 | 22.64 | 0.004 |
Forward | 18.23 | 75.1 | 1068.4 | 22.71 |
[1] | The National Renewable Energy Laboratory. Best-research-cell- efficiencies Chart. [2023-12-14]. https://www.nrel.gov/pv/cell-efficiency.html. |
[2] | RÜHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy, 2016, 130: 139. |
[3] | LUO D, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2019, 5(1): 44. |
[4] | KIM M C, AHN N, LIM E, et al. Degradation of CH3NH3PbI3 perovskite materials by localized charges and its polarity dependency. Journal of Materials Chemistry A, 2019, 7(19): 12075. |
[5] | ALTINKAYA C, AYDIN E, UGUR E, et al. Tin oxide electron- selective layers for efficient, stable, and scalable perovskite solar cells. Advanced Materials, 2021, 33(15): e2005504. |
[6] | YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234. |
[7] | KIM M R, MA D. Quantum-dot-based solar cells: recent advances, strategies, and challenges. Journal of Physical Chemistry Letters, 2015, 6(1): 85. |
[8] | PARK S Y, ZHU K. Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Advanced Materials, 2022, 34(27): e2110438. |
[9] | LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395. |
[10] | HUANG A, LEI L, ZHU J, et al. Achieving high current density of perovskite solar cells by modulating the dominated facets of room- temperature DC magnetron sputtered TiO2 electron extraction layer. ACS Applied Materials & Interfaces, 2017, 9(3): 2016. |
[11] | DONG H, WANG J, LI X, et al. Modifying SnO2 with polyacrylamide to enhance the performance of perovskite solar cells. ACS Applied Materials & Interfaces, 2022, 14(29): 34143. |
[12] | ZHANG P, WU J, ZHANG T, et al. Perovskite solar cells with ZnO electron-transporting materials. Advanced Materials, 2018, 30(3): 1703737. |
[13] | XIONG L, GUO Y, WEN J, et al. Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials, 2018, 28(35): 1802757. |
[14] | RAO H S, CHEN B X, LI W G, et al. Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells. Advanced Functional Materials, 2015, 25(46): 7200. |
[15] | STOLTERFOHT M, CAPRIOGLIO P, WOLFF C M, et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy & Environmental Science, 2019, 12(9): 2778. |
[16] | ZHAO D, ZHANG C, ZHAO M, et al. A comprehensive optimization strategy: potassium phytate-doped SnO2 as the electron-transport layer for high-efficiency perovskite solar cells. Journal of Materials Chemistry C, 2022, 10(19): 7641. |
[17] | YOU S, ZENG H, KU Z, et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Advanced Materials, 2020, 32(43): e2003990. |
[18] | GUO X, DU J, LIN Z, et al. Enhanced efficiency and stability of planar perovskite solar cells using SnO2:InCl3 electron transport layer through synergetic doping and passivation approaches. Chemical Engineering Journal, 2021, 407: 127997. |
[19] | WEI J, GUO F, WANG X, et al. SnO2-in-polymer matrix for high- efficiency perovskite solar cells with improved reproducibility and stability. Advanced Materials, 2018, 30(52): e1805153. |
[20] | MENG Y, LIU C, CAO R, et al. Pre-buried ETL with bottom-up strategy toward flexible perovskite solar cells with efficiency over 23%. Advanced Functional Materials, 2023, 33(28): 2214788. |
[21] | LIN L, JONES T W, WANG J T W, et al. Strategically constructed bilayer tin (IV) oxide as electron transport layer boosts performance and reduces hysteresis in perovskite solar cells. Small, 2020, 16(12): 1901466. |
[22] |
RAOUI Y, EZ-ZAHRAOUY H, KAZIM S, et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. Journal of Energy Chemistry, 2021, 54: 822.
DOI |
[23] | YI Z, LI X, XIAO B, et al. Dual-interface engineering induced by silane coupling agents with different functional groups constructing high-performance flexible perovskite solar cells. Chemical Engineering Journal, 2023, 469: 143790. |
[24] | XIONG Z, LAN L, WANG Y, et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Letters, 2021, 6(11): 3824. |
[1] | ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 681-690. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHENG Bo, AN Xiaohang, LI Dinghua, YANG Rongjie. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio [J]. Journal of Inorganic Materials, 2024, 39(5): 509-516. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[7] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[8] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[11] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[12] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[13] | GUO Yuxiang, HUANG Liqiang, WANG Gang, WANG Hongzhi. Dual-lithium-salt Gel Complex Electrolyte: Preparation and Application in Lithium-metal Battery [J]. Journal of Inorganic Materials, 2023, 38(7): 785-792. |
[14] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[15] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||