Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (1): 81-89.DOI: 10.15541/jim20230229
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Yanli(), QIAN Xinyi, SHEN Chunyin, ZHAN Liang
Received:
2023-05-11
Revised:
2023-08-02
Published:
2024-01-20
Online:
2023-10-15
About author:
WANG Yanli (1975-), female, PhD, associate professor. E-mail: ylwang@ecust.edu.cn
Supported by:
CLC Number:
WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO[J]. Journal of Inorganic Materials, 2024, 39(1): 81-89.
Fig. 5 (a) Nitrogen adsorption/desorption isotherms and (b) corresponding pore size distribution curves of G@MnOx-CeO2 catalysts with different metal loadings
Sample | SBET/ (m2·g-1) | Vtotal/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
G@Ce(0.9) | 65.0 | 0.125 | 7.67 |
G@Mn(0.18)Ce(0.45) | 241.2 | 0.230 | 3.81 |
G@Mn(0.35)Ce(0.9) | 197.5 | 0.287 | 5.82 |
G@Mn(1)Ce(2.7) | 126.6 | 0.199 | 6.29 |
Table 1 Pore parameters of various catalysts
Sample | SBET/ (m2·g-1) | Vtotal/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
G@Ce(0.9) | 65.0 | 0.125 | 7.67 |
G@Mn(0.18)Ce(0.45) | 241.2 | 0.230 | 3.81 |
G@Mn(0.35)Ce(0.9) | 197.5 | 0.287 | 5.82 |
G@Mn(1)Ce(2.7) | 126.6 | 0.199 | 6.29 |
Sample | Surface atomic concentration/% | Relative atomic ratio/% | ||||
---|---|---|---|---|---|---|
C | O | Mn | Ce | Oβ/O | (Mn3++Mn4+)/Mn | |
G@Mn(0.35)Ce(0.9) | 18.10 | 65.72 | 8.26 | 7.92 | 45.2 | 80.1 |
Table 2 Surface atomic concentrations of G@Mn(0.35)Ce(0.9) catalyst
Sample | Surface atomic concentration/% | Relative atomic ratio/% | ||||
---|---|---|---|---|---|---|
C | O | Mn | Ce | Oβ/O | (Mn3++Mn4+)/Mn | |
G@Mn(0.35)Ce(0.9) | 18.10 | 65.72 | 8.26 | 7.92 | 45.2 | 80.1 |
[1] |
QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental, 2003, 44(3):217.
DOI URL |
[2] |
KOMPIO P G, BRUCKNER A, HIPLER F, et al. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 2012, 286(1):237.
DOI URL |
[3] |
LEE I Y, KIM D W, LEE J B, et al. A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 2002, 90(3):267.
DOI URL |
[4] |
KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A: General, 2007, 327(2):261.
DOI URL |
[5] |
QI G, YANG R T. Performance and kinetics study for low- temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis, 2003, 217(2):434.
DOI URL |
[6] |
WU Z B, JIN R B, LIU Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications, 2008, 9(13): 2217.
DOI URL |
[7] | LIU Z M, YANG Y, ZHANG S X, et al. Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures. Catalysis Today, 2013, 216: 76. |
[8] | LI Yi, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chemical Engineering Journal, 2017, 330: 213. |
[9] | DENG S S, LI Y H, A R T, et al. Low-temperature selective catalytic reduction of NO with NH3 over manganese and tin oxides supported on titania. Chemical Industry and Engineering Progress, 2013, 32(10):2403. |
[10] | CHANG H Z, LI J H, CHEN X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catalysis Communications, 2012, 27: 54. |
[11] | YAO X J, CHEN L, CAO J, et al. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low- temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 2019, 369: 46. |
[12] |
TANG X L, WANG C Z, GAO F Y, et al. Effect of hierarchical element doping on the low-temperature activity of manganese- based catalysts for NH3-SCR. Journal of Environmental Chemical Engineering, 2020, 8(5):104399.
DOI URL |
[13] |
WANG Y L, LI X X, ZHAN L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature. Industrial & Engineering Chemistry Research, 2015, 54(8):2274.
DOI URL |
[14] |
SHEN B X, LIU T. Deactivation of MnOx-CeOx/ACF catalysts for low-temperature NH3-SCR in the presence of SO2. Acta Physico-Chimica Sinica, 2010, 26(11):3009.
DOI URL |
[15] |
ZHANG D S, ZHANG L, SHI L Y, et al. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale, 2013, 5(3):1127.
DOI URL |
[16] |
JIAO J Z, LI S H, HUANG B C. Preparation of manganese oxides supported on graphene catalysts and their activity in low-temperature NH3-SCR. Acta Physico-Chimica Sinica, 2015, 31(7):1383.
DOI URL |
[17] | XU H M, QU Z, ZONG C X, et al. MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury. Environmental Science and Technology, 2015, 49(11): 6823. |
[18] |
LU X N, SONG C Y, JIA S H, et al. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene. Chemical Engineering Journal, 2015, 260(12):776.
DOI URL |
[19] | XIAO X, SHENG Z Y, YANG L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catalysis Science & Technology, 2016, 6(5):1507. |
[20] | YAO W Q, WU S B, ZHAN L, et al. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chemical Engineering Journal, 2019, 361: 329. |
[21] |
YANG S B, ZHAN L, XU X Y, et al. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture. Advanced Materials, 2013, 25(15): 2130.
DOI URL |
[22] |
YAO W Q, CUI Y S, ZHAN L, et al. Two-dimensional sandwich-like Ag coated silicon-graphene-silicon nanostructures for superior lithium storage. Applied Surface Science, 2017, 425(1):614.
DOI URL |
[23] | LV L, SHEN Y Q. Selective catalytic reduction with NH3 at low temperature. Journal of Combustion Science and Technology, 2011, 17(2):103. |
[24] | LIU Chang, GAO G, SHI J W, et al. MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature. Catalysis Communications, 2016, 86: 36. |
[25] | KONG Z K, LI Y, WANG Y L, et al. Monodispersed MnOx-CeO2 solid solution as superior electrocatalyst for Li2S precipitation and conversion. Chemical Engineering Journal, 2020, 392: 123697. |
[26] |
DENG D Y, CHEN N, XIAO X C, et al. Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics, 2017, 23(1):121.
DOI URL |
[27] | YAO W Y, LIU Y, WU Z B. The promoting effect of CeO2@Ce-O-P multi-core@shell structure on SO2 tolerance for selective catalytic reduction of NO with NH3 at low temperature. Applied Surface Science, 2018, 442: 156. |
[28] |
MACHIDA M, UTO M, KUROGI D, et al. Solid-gas interaction of nitrogen oxide adsorbed on MnOx-CeO2: a DRIFTS study. Journal of Materials Chemistry, 2001, 11(3):900.
DOI URL |
[29] | ZHANG X M, DENG Y Q, TIAN P, et al. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Applied Catalysis B: Environmental, 2016, 191: 179. |
[30] | YOU X C, SHENG Z Y, YU D Q, et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Applied Surface Science, 2017, 423: 845. |
[31] | WU Y Z, LIU S Q, WANG H Y, et al. A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochimica Acta, 2013, 90: 210. |
[32] |
WANG Y L, KANG Y, GE M, et al. Cerium and tin oxides anchored onto reduced graphene oxide for selective catalytic reduction of NO with NH3 at low temperatures. RSC Advances, 2018, 8(63):36383.
DOI URL |
[33] |
LU X N, SONG C Y, CHANG C C, et al. Manganese oxides supported on TiO2-graphene nanocomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature. Industrial & Engineering Chemistry Research, 2014, 53(29):11601.
DOI URL |
[34] | WANG X, ZHENG Y Y, XU Z, et al. Low-temperature NO reduction with NH3 over Mn-CeOx/CNT catalysts prepared by a liquid-phase method. Catalysis Science & Technology, 2014, 4(6):1738. |
[35] | FAN Z Y, SHI J W, GAO C, et al. Rationally designed porous MnOx-FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3. ACS Applied Materials & Interfaces, 2017, 9(19):16117. |
[36] |
SUN M T, HUANG B C, MA J W, et al. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR. Acta Physico-Chimica Sinica, 2016, 32(6):1501.
DOI URL |
[1] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[2] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[3] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[4] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. |
[5] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[6] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[7] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[8] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[9] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[10] | SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode [J]. Journal of Inorganic Materials, 2024, 39(7): 810-818. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading [J]. Journal of Inorganic Materials, 2024, 39(5): 517-524. |
[13] | LI Guangyu, YUE Yifan, WANG Bo, ZHANG Chengyu, SUO Tao, LI Yulong. Damage of 2D-SiC/SiC Composites under Projectile Impact and Tensile Properties after Impact [J]. Journal of Inorganic Materials, 2024, 39(5): 494-500. |
[14] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[15] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||