Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (7): 833-839.DOI: 10.15541/jim20240403
• RESEARCH LETTER • Previous Articles Next Articles
WEI Jianwen1,2,3(), ZHANG Lijuan1,2,3, GENG Linlin1,2,3, LI Yu1,2,3, LIAO Lei1,2,3, WANG Dunqiu1,2,3
Received:
2024-09-06
Revised:
2024-12-05
Published:
2025-07-20
Online:
2024-12-11
About author:
WEI Jianwen (1975-), male, professor. E-mail: jianwen988@126.com
Supported by:
CLC Number:
WEI Jianwen, ZHANG Lijuan, GENG Linlin, LI Yu, LIAO Lei, WANG Dunqiu. Novel CO2 Adsorbent Prepared with ZSM-5/MCM-48 as Support: High Adsorption Property and Its Mechanism[J]. Journal of Inorganic Materials, 2025, 40(7): 833-839.
Adsorbent | SBET/ (m2·g-1) | Vt/ (cm3·g-1) | N2 content/ (mmol·g-1) | CO2 adsorption capacity/ (mmol·g-1) |
---|---|---|---|---|
A-ZM-1 | 237.0 | 0.52 | 4.97 | 1.71 |
A-ZM-T50 | 111.2 | 0.21 | 8.94 | 5.04 |
A-ZM-T60 | 13.0 | 0.04 | 11.89 | 5.82 |
A-ZM-T70 | 5.8 | 0.02 | 14.85 | 4.51 |
A-ZM-P50 | 91.5 | 0.20 | 8.52 | 3.53 |
A-ZM-P60 | 12.3 | 0.03 | 11.17 | 3.96 |
A-ZM-P70 | - | - | 14.06 | 3.05 |
Table 1 Physical properties, nitrogen contents and CO2 adsorption capacities of amino-bifunctionalization ZM adsorbents at 60 ℃
Adsorbent | SBET/ (m2·g-1) | Vt/ (cm3·g-1) | N2 content/ (mmol·g-1) | CO2 adsorption capacity/ (mmol·g-1) |
---|---|---|---|---|
A-ZM-1 | 237.0 | 0.52 | 4.97 | 1.71 |
A-ZM-T50 | 111.2 | 0.21 | 8.94 | 5.04 |
A-ZM-T60 | 13.0 | 0.04 | 11.89 | 5.82 |
A-ZM-T70 | 5.8 | 0.02 | 14.85 | 4.51 |
A-ZM-P50 | 91.5 | 0.20 | 8.52 | 3.53 |
A-ZM-P60 | 12.3 | 0.03 | 11.17 | 3.96 |
A-ZM-P70 | - | - | 14.06 | 3.05 |
Support | Modifier | Condition (CO2, in volume) | CO2 adsorption capacity/(mmol·g-1) | Ref. |
---|---|---|---|---|
MCF | APTMS+PEI | 75 ℃/10.5% CO2 | 2.36 | [ |
SBA-15 | APTES+TEPA | 75 ℃/20% CO2 | 5.68 | [ |
HNTS | APTES+PEI | 50 ℃/50% CO2 | 1.03 | [ |
PE-SBA-15 | APTES+TEPA | 40 ℃/15% CO2 | 5.50 | [ |
PE-SBA-15 | DT+TEPA | 40 ℃/15% CO2 | 4.20 | [ |
Beta/KIT-6 | APTMS+TEPA | 60 ℃/15% CO2 | 5.12 | [ |
ZSM-5/MCM-48 | APTES+TEPA | 60 ℃/15% CO2 | 5.82 | This work |
Table 2 CO2 adsorption capacities of various amino-bifunctionalized absorbents
Support | Modifier | Condition (CO2, in volume) | CO2 adsorption capacity/(mmol·g-1) | Ref. |
---|---|---|---|---|
MCF | APTMS+PEI | 75 ℃/10.5% CO2 | 2.36 | [ |
SBA-15 | APTES+TEPA | 75 ℃/20% CO2 | 5.68 | [ |
HNTS | APTES+PEI | 50 ℃/50% CO2 | 1.03 | [ |
PE-SBA-15 | APTES+TEPA | 40 ℃/15% CO2 | 5.50 | [ |
PE-SBA-15 | DT+TEPA | 40 ℃/15% CO2 | 4.20 | [ |
Beta/KIT-6 | APTMS+TEPA | 60 ℃/15% CO2 | 5.12 | [ |
ZSM-5/MCM-48 | APTES+TEPA | 60 ℃/15% CO2 | 5.82 | This work |
Model | Kinetics parameter | 30 ℃ | 45 ℃ | 60 ℃ | 75 ℃ | 90 ℃ |
---|---|---|---|---|---|---|
Pseudo-first-order | qe/(mmol·g-1) | 4.21 | 4.49 | 5.68 | 5.13 | 3.95 |
k1/min-1 | 0.062 | 0.083 | 0.062 | 0.089 | 0.080 | |
R2 | 0.989 | 0.966 | 0.989 | 0.973 | 0.987 | |
Pseudo-second-order | qe/(mmol·g-1) | 4.83 | 5.06 | 5.70 | 6.51 | 4.48 |
k2/(g·mmol-1·min-1) | 0.017 | 0.021 | 0.022 | 0.012 | 0.023 | |
R2 | 0.997 | 0.988 | 0.991 | 0.997 | 0.987 | |
Avrami | qe/(mmol·g-1) | 4.37 | 4.75 | 5.89 | 5.34 | 4.00 |
kA/min-1 | 0.109 | 0.153 | 0.109 | 0.167 | 0.099 | |
nA | 0.776 | 0.696 | 0.776 | 0.704 | 0.901 | |
R2 | 0.998 | 0.991 | 0.998 | 0.990 | 0.998 |
Table 3 Kinetic parameters of CO2 adsorption on A-ZM-T60 at various temperatures
Model | Kinetics parameter | 30 ℃ | 45 ℃ | 60 ℃ | 75 ℃ | 90 ℃ |
---|---|---|---|---|---|---|
Pseudo-first-order | qe/(mmol·g-1) | 4.21 | 4.49 | 5.68 | 5.13 | 3.95 |
k1/min-1 | 0.062 | 0.083 | 0.062 | 0.089 | 0.080 | |
R2 | 0.989 | 0.966 | 0.989 | 0.973 | 0.987 | |
Pseudo-second-order | qe/(mmol·g-1) | 4.83 | 5.06 | 5.70 | 6.51 | 4.48 |
k2/(g·mmol-1·min-1) | 0.017 | 0.021 | 0.022 | 0.012 | 0.023 | |
R2 | 0.997 | 0.988 | 0.991 | 0.997 | 0.987 | |
Avrami | qe/(mmol·g-1) | 4.37 | 4.75 | 5.89 | 5.34 | 4.00 |
kA/min-1 | 0.109 | 0.153 | 0.109 | 0.167 | 0.099 | |
nA | 0.776 | 0.696 | 0.776 | 0.704 | 0.901 | |
R2 | 0.998 | 0.991 | 0.998 | 0.990 | 0.998 |
[1] | GEISSLER C H, MARAVELIAS C T. Economic, energetic, and environmental analysis of lignocellulosic biorefineries with carbon capture. Applied Energy, 2021, 302: 117539. |
[2] | VOROKHTA M, KUSDHANY M I M, ŠVÁBOVÁ M, et al. Hierarchically porous carbon foams coated with carbon nitride: insights into adsorbents for pre-combustion and post-combustion CO2 separation. Separation and Purification Technology, 2025, 354: 129054. |
[3] | AKEEB O, WANG L, XIE W G, et al. Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: a review. Journal of Environmental Management, 2022, 313: 115026. |
[4] | ZHOU C G, YU S N, MA K, et al. Amine-functionalized mesoporous monolithic adsorbents for post-combustion carbon dioxide capture. Chemical Engineering Journal, 2021, 413: 127675. |
[5] | MANIARASU R, RATHORE S K, MURUGAN S. Biomass-based activated carbon for CO2 adsorption--a review. Energy & Environment, 2023, 34(5): 1674. |
[6] | XIN H L, ZHOU S N, XU S Y, et al. Functionalized linker to form high-symmetry adsorption sites in micropore COF for CO2 capture and separation: insight from GCMC simulations. Journal of Materials Science, 2022, 57(11): 6282. |
[7] | KWON S H, HIREMATH V, NANOTI A, et al. MgO-based composites for high pressure CO2 capture: a first-principles theoretical and experimental investigation. Korean Journal of Chemical Engineering, 2023, 40(12): 2990. |
[8] | YI D W, DU H L, LI Y F, et al. Study on green controllable preparation of coal gangue-based 13-X molecular sieves and its CO2 capture application. Coatings, 2023, 13(11): 1886. |
[9] | LIU Q H, FANG Y P, MIAO C H, et al. Preparation of ZSM-5 molecular sieve modified by Kaolin and its CO2 adsorption performance investigation. Microporous and Mesoporous Materials, 2023, 360: 112678. |
[10] | ODEDAIRO T, BALASAMY R J, AL-KHATTAF S. Influence of mesoporous materials containing ZSM-5 on alkylation and cracking reactions. Journal of Molecular Catalysis A: Chemical, 2011, 345(1/2): 21. |
[11] | LIU T T, GUO Y Y, LUO L, et al. Interactive adsorption mechanism and product distribution of impurity gases on CO2 adsorption over amine-grafted ZSM-5/SBA-16 adsorbent. Fuel, 2023, 354: 129307. |
[12] | TIAN D, CHEN Y H, LU X Y, et al. Facile preparation of mesoporous MCM-48 containing silver nanoparticles with fly ash as raw materials for CO catalytic oxidation. Micromachines, 2021, 12(7): 841. |
[13] | BORCĂNESCU S, POPA A, VERDEȘ O, et al. Functionalized ordered mesoporous MCM-48 silica: synthesis, characterization and adsorbent for CO2 capture. International Journal of Molecular Sciences, 2023, 24(12): 10345. |
[14] | JIA W H, LI Q Y, ZHANG L N, et al. Highly efficient photocatalytic reduction of CO2 on amine-functionalized Ti-MCM-41 zeolite. Journal of Nanoparticle Research, 2020, 22(9): 288. |
[15] | SUBA M, POPA A, VERDEȘ O, et al. Ni and Ce grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Catalysts, 2022, 12(11): 1339. |
[16] | CHEREVOTAN A, RAY B, YADAV A, et al. Tuning the hybridization and charge polarization in metal nanoparticles dispersed over Schiff base functionalized SBA-15 enhances CO2 capture and conversion to formic acid. Journal of Materials Chemistry A, 2022, 10(35): 18354. |
[17] | CHENG Z B, CHENG Q P. Performance of CO2 adsorption by hybrid amine-functionalized MCM-41. Desalination and Water Treatment, 2022, 254: 142. |
[18] | WANG X, GUO Q J, ZHAO J, et al. Mixed amine-modified MCM-41 sorbents for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 37: 90. |
[19] | HE C, LI J J, LI P, et al. Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Applied Catalysis B: Environmental, 2010, 96(3/4): 466. |
[20] | WANG J, ZHANG M Z, LI G, et al. Ultrafine Au nanoparticles confined in three-dimensional mesopores of MCM-48 for efficient and regenerable Hg0 removal sorbent in H2S and H2O containing natural gas. Fuel, 2021, 286: 119479. |
[21] | QI T T, SHI J, WANG X S, et al. Synthesis of hierarchical ZSM-5 zeolite in a rotating packed bed: mechanism, property and application. Microporous and Mesoporous Materials, 2021, 311: 110679. |
[22] | KIM S, LAUTERBACH J. Synthesis of ZSM-5 catalysts via microwave-assisted heating method for military jet fuel cracking into petroleum gas. Microporous and Mesoporous Materials, 2021, 328: 111446. |
[23] | XIA Y D, MOKAYA R. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. Journal of Materials Chemistry, 2004, 14(5): 863. |
[24] | WILFONG W C, KAIL B W, JONES C W, et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: a new class 4 category. ACS Applied Materials & Interfaces, 2016, 8(20): 12780. |
[25] | FU L K, MA J J, LI S X, et al. Mixed-amine modified mesocellular siliceous foam: improving the dispersity of polyethylenimine for CO2 adsorption. Materials Science and Engineering: B, 2021, 269: 115172. |
[26] | ZHANG G J, ZHAO P Y, HAO L X, et al. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support. Separation and Purification Technology, 2019, 209: 516. |
[27] | WANG Z L, PANG Y H, GUO H X, et al. Increased CO2 capture capacity via amino-bifunctionalized halloysite nanotubes adsorbents. Fuel, 2024, 364: 131036. |
[28] | SANZ-PÉREZ E S, LOBATO B, LOPEZ-ANTON M A, et al. Effectiveness of amino-functionalized sorbents for CO2 capture in the presence of Hg. Fuel, 2020, 267: 117250. |
[29] | YUAN Y, WEI J W, GENG L L, et al. An amine-bifunctionalization strategy with Beta/KIT-6 composite as a support for CO2 adsorbent preparation. RSC Advances, 2020, 10(56): 34187. |
[30] | KAUFFMAN K L, CULP J T, GOODMAN A, et al. FT-IR study of CO2 adsorption in a dynamic copper(II) benzoate-pyrazine host with CO2-CO2 interactions in the adsorbed state. The Journal of Physical Chemistry C, 2011, 115(5): 1857. |
[31] | HAN S Y, MENG Y, AIHEMAITI A, et al. Biogas upgrading with various single and blended amines solutions: capacities and kinetics. Energy, 2022, 253: 124195. |
[32] | HIYOSHI N, YOGO K, YASHIMA T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials, 2005, 84(1/2/3): 357.) : 357. |
[33] | BALI S, LEISEN J, FOO G S, et al. Aminosilanes grafted to basic alumina as CO2 adsorbents—role of grafting conditions on CO2 adsorption properties. ChemSusChem, 2014, 7(11): 3145. |
[34] | HUANG H Y, YANG R T, CHINN D, et al. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427. |
[1] | HONG Peiping, LIANG Long, WU Lian, MA Yingkang, PANG Hao. Structure Regulation of ZIF-67 and Adsorption Properties for Chlortetracycline Hydrochloride [J]. Journal of Inorganic Materials, 2025, 40(4): 388-396. |
[2] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[3] | Rong-Hui LI, Yi-Zheng JIA, Nan-Nan HU. 3D Hierarchical Flower Like Alumina Nanomaterials: Preparation and Arsenic Removal Performance [J]. Journal of Inorganic Materials, 2019, 34(5): 553-559. |
[4] | ZHANG Jun,WANG De-Ping,YAO Ai-Hua,HUANG Wen-Hai. Research on Adsorption Capacity for Ni2+ and Mechanism of Nano-hydroxyapatite [J]. Journal of Inorganic Materials, 2009, 24(2): 269-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||