[1] SEIDEL J, VASUDEVAN R K, VALANOOR N.Topological structures in multiferroics-domain walls, skyrmions and vortices.Advanced Electronic Materials, 2016, 2(1): 1500292. [2] SEIDEL J.Nanoelectronics based on topological structures.Nature Materials, 2019, 18: 188. [3] DAS S, HONG Z, MCCARTER M,et al. A new era in ferroelectrics. APL Materials, 2020, 8(12): 120902. [4] TANG Y L, ZHU Y L, MA X L.Topological polar structures in ferroelectric oxide films.Journal of Applied Physics, 2021, 129(20): 200904. [5] TANG Y L, ZHU Y L, MA X L,et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science, 2015, 348(6234): 547. [6] YADAV A K, NELSON C T, HSU S L,et al. Observation of polar vortices in oxide superlattices. Nature, 2016, 530: 198. [7] DAS S, TANG Y L, HONG Z,et al. Observation of room-temperature polar skyrmions. Nature, 2019, 568: 368. [8] RODRIGUEZ B J, GAO X S, LIU L F,et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Letters, 2009, 9(3): 1127. [9] SCOTT J F.Applications of modern ferroelectrics.Science, 2007, 315(5814): 954. [10] OWCZAREK M, HUJSAK K A, FERRIS D P,et al. Flexible ferroelectric organic crystals. Nature Communications, 2016, 7: 13108. [11] MARTIN L W, RAPPE A M.Thin-film ferroelectric materials and their applications.Nature Reviews Materials, 2017, 2: 16087. [12] HAN S T, ZHOU Y, ROY V A L. Towards the development of flexible non-volatile memories.Advanced Materials, 2013, 25(38): 5424. [13] LI Z W, WANG Y J, TIAN G,et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Science Advances, 2017, 3(8): e1700919. [14] KIM K E, JEONG S, CHU K,et al. Configurable topological textures in strain graded ferroelectric nanoplates. Nature Communications, 2018, 9: 403. [15] MA J, MA J, ZHANG Q H,et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nature Nanotechnology, 2018, 13: 947. [16] KIM K E, KIM Y J, ZHANG Y,et al. Ferroelastically protected polarization switching pathways to control electrical conductivity in strain-graded ferroelectric nanoplates. Physical Review Materials, 2018, 2: 084412. [17] HAN M J, WANG Y J, TANG Y L,et al. Shape and surface charge modulation of topological domains in oxide multiferroics. The Journal of Physical Chemistry C, 2019, 123(4): 2557. [18] DING L L, JI Y, ZHANG X Y,et al. Exotic quad-domain textures and transport characteristics of self-assembled BiFeO3 nanoislands on Nb-doped SrTiO3. ACS Applied Materials & Interfaces, 2021, 13(10): 12331. [19] ZHOU X, SUN H Y, LUO Z,et al. Ferroelectric diode characteristic and tri-state memory in self-assembled BiFeO3 nanoislands with cross-shaped domain structure. Applied Physics Letters, 2022, 121(4): 042903. [20] WANG Y, CHEN M F, MA J,et al. A self-assembly growth strategy for a highly ordered ferroelectric nanoisland array. Nanoscale, 2022, 14(38): 14046. [21] TIAN G, CHEN D Y, FAN H,et al. Observation of exotic domain structures in ferroelectric nanodot arrays fabricated via a universal nanopatterning approach. ACS Applied Materials & Interfaces, 2017, 9(42): 37219. [22] TIAN G, YI X, SONG Z Q,et al. Templated growth strategy for highly ordered topological ferroelectric quad-domain textures. Applied Physics Reviews, 2023, 10(2): 021413. [23] TIAN G, YANG W D, SONG X,et al. Manipulation of conductive domain walls in confined ferroelectric nanoislands. Advanced Functional Materials, 2019, 29(32): 1807276. [24] ZHENG H M, ZHAN Q, ZAVALICHE F,et al. Controlling self-assembled perovskite-spinel nanostructures. Nano Letters, 2006, 6(7): 1401. [25] LI X L, WANG C X, YANG G W.Thermodynamic theory of growth of nanostructures.Progress in Materials Science, 2014, 64: 121. [26] PRESTIPINO S, LAIO A, TOSATTI E.Systematic improvement of classical nucleation theory.Physical Review Letters, 2012, 108(22): 225701. [27] LEE J K, CHOY J H, CHOI Y.Equilibrium shape and heterogeneous nucleation barrier at spherical interfaces.Surface Science, 1991, 256: 147. [28] GOMEZ L R, GARCIA N A, VITELLI V,et al. Phase nucleation in curved space. Nature Communications, 2015, 6: 6856. [29] MA J, WANG J, ZHOU H,et al. Self-assembly growth of a multiferroic topological nanoisland array. Nanoscale, 2019, 11(43): 20514. [30] WANG Z L.Steps and facets on annealed LaAlO3{100} and {110} surfaces.Surface Science, 1996, 360: 180. |