Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1076-1082.DOI: 10.15541/jim20230050
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
DING Tongshun1(), FENG Ping2(
), SUN Xuewen1, SHAN Husheng1, LI Qi2, SONG Jian1(
)
Received:
2023-02-01
Revised:
2023-04-02
Published:
2023-09-20
Online:
2023-05-04
Contact:
FENG Ping, PhD. E-mail: ping.feng@solarspace.cn;About author:
DING Tongshun (1998-), male, Master candidate. E-mail: TS21180067P31@cumt.edu.cn
Supported by:
CLC Number:
DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance[J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082.
Fig. 2 SEM images and particle size distributions of perovskite films with different Fmoc-FF-OH concentrations (a) 0 g·L-1; (b) 0.2 g·L-1; (c) 0.4 g·L-1; (d) 0.6 g·L-1; (e) 0.8 g·L-1
Fig. 4 (a) PL spectra, (b) UV-Vis spectra and (c) TRPL spectra of perovskite thin films with different concentrations of Fmoc-FF-OH; Colorful figures are available on website
Fig. 5 Effects of addition of Fmoc-FF-OH on the PSCs photovoltaic performance (a) J-V curves of PSCs with different concentrations of Fmoc-FF-OH; (b) Forward and reverse J-V curves for PSCs, (c) IPCE and integral current curves, (d) pure hole I-V curves under dark conditions and (e) electrochemical impedance spectra of PSCs without and with 0.6 g·L-1 Fmoc-FF-OH Colorful figures are available on website
Concentration (g·L-1) | Direction | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Hysteresis Index |
---|---|---|---|---|---|---|
0 | Reverse | 1.05 | 19.28 | 76.05 | 15.50 | 0.11 |
Forward | 1.02 | 17.53 | 74.76 | 13.39 | ||
0.2 | Reverse | 1.06 | 19.23 | 78.74 | 16.12 | — |
0.4 | Reverse | 1.06 | 19.37 | 78.37 | 16.24 | — |
0.6 | Reverse | 1.10 | 19.94 | 79.47 | 17.44 | 0.07 |
Forward | 1.09 | 19.03 | 77.36 | 16.10 | ||
0.8 | Reverse | 1.07 | 18.94 | 77.98 | 15.91 | — |
Table 1 Photovoltaic parameters of PSCs with different concentrations of Fmoc-FF-OH
Concentration (g·L-1) | Direction | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Hysteresis Index |
---|---|---|---|---|---|---|
0 | Reverse | 1.05 | 19.28 | 76.05 | 15.50 | 0.11 |
Forward | 1.02 | 17.53 | 74.76 | 13.39 | ||
0.2 | Reverse | 1.06 | 19.23 | 78.74 | 16.12 | — |
0.4 | Reverse | 1.06 | 19.37 | 78.37 | 16.24 | — |
0.6 | Reverse | 1.10 | 19.94 | 79.47 | 17.44 | 0.07 |
Forward | 1.09 | 19.03 | 77.36 | 16.10 | ||
0.8 | Reverse | 1.07 | 18.94 | 77.98 | 15.91 | — |
Fig. 6 (a) PCE stability test for PSCs devices without and with 0.6 g·L-1 Fmoc-FF-OH; (b) Constant voltage current curves of PSCs with 0.6 g·L-1 Fmoc-FF-OH
Concentration (g·L-1) | A1 | τ1 /ns | A2 | τ2 /ns | τave /ns |
---|---|---|---|---|---|
0 | 12.03 | 4 | 87.97 | 125 | 124.47 |
0.2 | 11.12 | 7 | 88.88 | 133 | 132.17 |
0.4 | 5.04 | 10 | 94.98 | 231 | 230.49 |
0.6 | 0.12 | 6 | 99.88 | 332 | 331.99 |
0.8 | 3.79 | 8 | 96.21 | 226 | 225.67 |
Table S1 TRPL fitting parameters of perovskite films with addition of different concentrations of Fmoc-FF-OH
Concentration (g·L-1) | A1 | τ1 /ns | A2 | τ2 /ns | τave /ns |
---|---|---|---|---|---|
0 | 12.03 | 4 | 87.97 | 125 | 124.47 |
0.2 | 11.12 | 7 | 88.88 | 133 | 132.17 |
0.4 | 5.04 | 10 | 94.98 | 231 | 230.49 |
0.6 | 0.12 | 6 | 99.88 | 332 | 331.99 |
0.8 | 3.79 | 8 | 96.21 | 226 | 225.67 |
[1] |
EONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381.
DOI |
[2] |
NIV A, ABRAMS Z R, GHARGHI M, et al. Overcoming the bandgap limitation on solar cell materials. Applied Physics Letters, 2012, 100(8): 083901.
DOI URL |
[3] |
YANG J, TANG W, YUAN R, et al. Defect mitigation using d-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12(6): 2050.
DOI URL |
[4] |
DU X, QIU R, ZOU T, et al. Enhanced uniformity and stability of Pb-Sn perovskite solar cells via Me4NBr passivation. Advanced Materials Interfaces, 2019, 6(14): 1900413.
DOI URL |
[5] |
SONG J, QIU Q, SUN X, et al. Surface modification of perovskite film by an amino acid derivative for perovskite solar cell. Organic Electronics, 2022, 108: 106598.
DOI URL |
[6] |
WANG Y X, GAO P Y, FANG X Y, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells. Journal of Inorganic Materials, 2021, 36(2): 168.
DOI URL |
[7] | SONG J, SU X, YAO Q, et al. High performance perovskite solar cell based on passivation by a multifunctional amino acid derivative. Chinese Journal of Inorganic Chemistry, 2023, 39(2): 327. |
[8] | LU P, GAO C, SUN X, et al. Synthesis of Cs-rich CH(NH2)2)xCs1-xPbI3 perovskite films using additives with low sublimation temperature. Acta Physico-Chimica Sinica, 2021, 37(4): 2009036. |
[9] [1] |
WANG P, ZHAO J, LIU J, et al. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources, 2017, 339: 51.
DOI URL |
[10] |
LI T, WANG S, YANG J, et al. Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nano Energy, 2021, 82: 105742.
DOI URL |
[11] |
CAI Y, CUI J, CHEN M, et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Advanced Functional Materials, 2021, 31(7): 2005776.
DOI URL |
[12] |
LIU W, HU Z, WANG L, et al. Passiviation of L-3-(4-pyridyl)- alanine on interfacial defects of perovskite solar cell. Journal of Inorganic Materials, 2021, 36(6): 629.
DOI URL |
[13] |
SONG J, REN Y, GONG S, et al. Performance enhancement of crystal silicon solar cell by a CsPbBr3-Cs4PbBr6 perovskite quantum dot@ZnO/ethylene vinyl acetate copolymer downshifting composite film. Solar RRL, 2022, 6(11): 2200336.
DOI URL |
[14] |
ZHANG F J, HAN B N, ZENG H B. Perovskite quantum dot photovoltaic and luminescent concentrator cells: current status and challenges. Journal of Inorganic Materials, 2022, 37(2): 117.
DOI |
[15] |
WANG W Q, ZHENG H F, LU G H, et al. Recent progress on application of nano metal oxides in perovskite solar cells. Journal of Inorganic Materials, 2016, 31(9): 897.
DOI URL |
[16] |
Zhang Y H, Li Y. Interface materials for perovskite solar cells. Rare Metals, 2021, 40(11): 2993.
DOI |
[17] |
SONG J, ZHAO L, HUANG S, et al. A p-p(+) homojunction- enhanced hole transfer in inverted planar perovskite solar cells. ChemSusChem, 2021, 14(5): 1396.
DOI URL |
[18] |
CHEN Y, YANG Z, WANG S, et al. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Advanced Materials, 2018, 30(52): 1805660.
DOI URL |
[19] | CAI B, XING Y, YANG Z, et al. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science, 2013, 6(5): 1480. |
[20] |
WU T, CUI D, LIU X, et al. Additive engineering toward high- performance tin perovskite solar cells. Solar RRL, 2021, 5(5): 2100034.
DOI URL |
[21] | HWANG I, JEONG I, LEE J, et al. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Applied Materials & Interfaces, 2015, 7(31): 17330. |
[22] |
ZHANG M, WANG Z H, ZHENG X J, et al. Study on the influence mechanism of TiO2 morphology on the conversion efficiency of MAPbBr3 solar cells. Journal of Inorganic Materials, 2018, 33(2): 245.
DOI |
[23] |
ZHAO L, SUN X, YAO Q, et al. Field-effect control in hole transport layer composed of Li:NiO/NiO for highly efficient inverted planar perovskite solar cells. Advanced Materials Interfaces, 2022, 9(2): 2101562.
DOI URL |
[24] |
HEO J H, IM S H. CH3NH3PbBr3-CH3NH3PbI3 perovskite- perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Advanced Materials, 2016, 28(25): 5121.
DOI URL |
[25] |
LIU C, YUAN S, ZZHANG H L, et al. Preparation of p-type CuI thin film by copper film iodization and its performance as a hole transport layer in reverse perovskite cells. Journal of Inorganic Materials, 2016, 31(4): 358.
DOI URL |
[26] |
CUI Q, ZHAO L, SUN X, et al. Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer. Chinese Physics B, 2022, 31(3): 038801.
DOI |
[27] |
GUO X, NIU G, WANG L. Chemical stability issue and its research process of perovskite solar cells with high efficiency. Acta Chimica Sinica, 2015, 73(3): 211.
DOI |
[28] |
LI C, WANG Y, CHOY W C H. Efficient interconnection in perovskite tandem solar cells. Small Methods, 2020, 4(7): 2000093.
DOI URL |
[29] |
CHEN Y, CHEN T, DAI L. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells. Advanced Materials, 2015, 27(6): 1053.
DOI URL |
[30] |
WAFEE S, LIU B H, LEU C C. Lewis bases: promising additives for enhanced performance of perovskite solar cells. Materials Today Energy, 2021, 22: 100847.
DOI URL |
[31] |
ZUO L, GU Z, YE T, et al. Enhanced photovoltaic performance of CH3NH3Pbl3 perovskite solar cells through interfacial engineering using self-assembling monolayer. Journal of the American Chemical Society, 2015, 137(7): 2674.
DOI URL |
[32] |
RYU S, NOH J H, JEON N J, et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy and Environmental Sciences, 2014, 7(8): 2614.
DOI URL |
[33] |
JIAO B, LIU X, QUAN Z, et al. Performance of perovskite solar cells doped with L-arginine. Journal of Inorganic Materials, 2022, 37(6): 669.
DOI URL |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[8] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[11] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[12] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[13] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||