Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (2): 213-218.DOI: 10.15541/jim20220155
Special Issue: 【信息功能】柔性材料(202409); 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
Previous Articles Next Articles
ZHANG Wanwen1(), LUO Jianqiang1(
), LIU Shujuan1, MA Jianguo1, ZHANG Xiaoping1, YANG Songwang2(
)
Received:
2022-03-21
Revised:
2022-07-21
Published:
2023-02-20
Online:
2022-08-04
Contact:
LUO Jianqiang, professor. E-mail: luojianqiang@163.com;About author:
: ZHANG Wanwen (1994-), male, Master candidate. E-mail: 2352937300@qq.com
Supported by:
CLC Number:
ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2023, 38(2): 213-218.
Fig. 2 SEM images of the zirconia film prepared by spray- coating without urea (a), with w(zirconia) : w(urea)= 2 : 1 (b) and 1 : 1 (c), cross-sectional SEM images of PSCs containing zirconia layer prepared with w(zirconia) : w(urea)= 2 : 1(d) and 1 : 1 (e) Circled areas in (d) are not completely filled
Fig. 3 J-V curves of PSCs prepared with w(zirconia) : w(urea)=2 : 1 and 1 : 1(a), and J-V curves from forward and reverse scanning of PSC prepared with w(zirconia) : w(urea)=1 : 1 (Zirconia layer thickness at ~1000 nm) (b)
Fig. 4 J-V curves of the triple-layer PSCs with spray-coated and screen-printed zirconia layer(a), IPCE spectrum and corresponding integrated current density of the PSC with 1100 nm thick zirconia layer(b), PCE distribution of 30 chips with three different thicknesses of zirconia layer(c), and stabilized power output of PSCs with optimized spray-coated zirconia layer (d)
Fig. S3 Cross-sectional SEM images of PSCs before filling perovskite with the zirconia thickness of (a, b) 750, (c, d) 1100 nm and (e, f) 1500 nm((a, c, e) before and (b, d, f) after filling perovkite)
Fig. S4 (a) J-V curves of the cell with different illumination areas with inset showing the tested cell photograph; (b) J-V curve of PSCs module with five cells connected in series with inset showing the tested cell photograph
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.
DOI PMID |
[2] |
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.
DOI PMID |
[3] |
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316.
DOI URL |
[4] | HUANG L, ZHOU X, XUE R, et al. Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at MXene conductive network for high-efficient perovskite solar cells. Nanomicro Lett., 2020, 12(1): 44. |
[5] |
PATIL P, MANN D S, NAKATE U T, et al. Hybrid interfacial ETL engineering using PCBM-SnS2 for high-performance p-i-n structured planar perovskite solar cells. Chem. Eng. J., 2020, 397: 125504.
DOI URL |
[6] |
JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511.
DOI URL |
[7] |
PARK M, CHO W, LEE G, et al. Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3. Small, 2019, 15(1): 1804005.
DOI URL |
[8] |
MCMEEKIN D P, MAHESH S, NOEL N K, et al. Solution- processed all-perovskite multi-junction solar cells. Joule, 2019, 3(2): 387.
DOI URL |
[9] |
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590(7847): 587.
DOI URL |
[10] |
MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295.
DOI PMID |
[11] |
TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution- processed planar perovskite solar cells via contact passivation. Science, 2017, 355(6326): 722.
DOI URL |
[12] |
LIU X, CHENG Y, LIU C, et al. 20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ. Sci., 2019, 12(5): 1622.
DOI URL |
[13] |
ZHOU Z, LIAN H J, XIE J, et al. Non-selective adsorption of organic cations enables conformal surface capping of perovskite grains for stabilized photovoltaic operation. Cell Reports Physical Science, 2022, 3(2): 100760.
DOI URL |
[14] |
LIU X, LIAN H, ZHOU Z, et al. Stoichiometric dissolution of defective CsPbI2Br surfaces for inorganic solar cells with 17.5% efficiency. Adv. Energy. Mater., 2022, 12(14): 2103933.
DOI URL |
[15] |
RONG Y, HU Y, MEI A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235.
DOI URL |
[16] |
LUO J, YANG H B, ZHUANG M, et al. Making fully printed perovskite solar cells stable outdoor with inorganic superhydrophobic coating. J. Energy Chem., 2020, 50: 332.
DOI URL |
[17] |
YANG K, LIU S, DU J K, et al. Improving hole-conductor-free fully printable mesoscopic perovskite solar cells' performance with enhanced open-circuit voltage via the octyltrimethylammonium chloride additive. Solar RRL, 2021, 5(4): 2000825.
DOI URL |
[18] |
WANG Y, ZHANG T, XU F, et al. A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells. Solar RRL, 2018, 2(1): 1700180.
DOI URL |
[19] |
HU L, ZHAO Q, HUANG S, et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun., 2021, 12(1): 466.
DOI URL |
[20] |
YANG D, YANG R, ZHANG J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci., 2015, 8(11): 3208.
DOI URL |
[21] |
DAGAR J, CASTRO-HERMOSA S, GASBARRI M, et al. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Research, 2018, 11(5): 2669.
DOI URL |
[22] |
YANG D, YANG R, PRIYA S, et al. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem. Int. Ed., 2019, 58(14): 4466.
DOI PMID |
[23] |
MATSUI T, SEO J Y, SALIBA M, et al. Room-temperature formation of highly crystalline multication perovskites for efficient, low-cost solar cells. Adv. Mater., 2017, 29(15): 1606258.
DOI URL |
[24] |
DI GIACOMO F, FAKHARUDDIN A, JOSE R, et al. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci., 2016, 9(10): 3007.
DOI URL |
[25] | HAQUE S A, PALOMARES E, UPADHYAYA H M, et al. Flexible dye sensitised nanocrystalline semiconductor solar cells. Chem. Commun., 2003, (24): 3008. |
[26] |
JIANG P, JONES T W, DUFFY N W, et al. Fully printable perovskite solar cells with highly-conductive, low-temperature, perovskite- compatible carbon electrode. Carbon, 2018, 129: 830.
DOI URL |
[27] |
LUO J, CHEN J, WU B, et al. Surface rutilization of anatase TiO2 for efficient electron extraction and stable Pmax output of perovskite solar cells. Chem, 2018, 4(4): 911.
DOI URL |
[28] |
RONG Y, HOU X, HU Y, et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun., 2017, 8: 14555.
DOI PMID |
[29] |
ZHANG Y H, LI Y. Interface materials for perovskite solar cells. Rare Met., 2021, 40(11): 2993.
DOI URL |
[30] |
CHANG J H, LIU K, LIN S Y, et al. Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27(4): 1104.
DOI URL |
[31] |
DENG Y, PENG E, SHAO Y, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci, 2015, 8(5): 1544.
DOI URL |
[32] |
WU Y, YANG X, CHEN W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat Energy, 2016, 1(11): 16148.
DOI URL |
[33] |
KIERMASCH D, GIL-ESCRIG L, BOLINK H J, et al. effects of masking on open-circuit voltage and fill factor in solar cells. Joule, 2019, 3(1): 16.
DOI URL |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[8] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[11] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[12] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[13] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[14] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[15] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||