Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 697-709.DOI: 10.15541/jim20220128
• REVIEW • Next Articles
SUN Lian(), GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui(
)
Received:
2022-03-08
Revised:
2022-04-12
Published:
2022-07-20
Online:
2022-04-26
Contact:
ZHOU Xingui, professor. E-mail: zhouxinguilmy@163.comAbout author:
SUN Lian (1993-), male, PhD candidate. E-mail: sunlian12@nudt.edu.cn
Supported by:
CLC Number:
SUN Lian, GU Quanchao, YANG Yaping, WANG Honglei, YU Jinshan, ZHOU Xingui. Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction[J]. Journal of Inorganic Materials, 2022, 37(7): 697-709.
Fig. 3 Designing strategy for ORR catalysts[3,41] (a) ORR mechanism with blue arrow representing dissociative mechanism, red arrows representing associative mechanism, and purple arrows representing the parts involving both mechanisms[3]; (b) “Volcano plots” showing relationship between oxygen binding energy and maximal activity[41] Colorful figures are available on website
Catalyst | Electrolyte | Onset potential / V (vs. RHE) | Half-wave potential / V (vs. RHE) | Electrons transfer number, n | Ref. |
---|---|---|---|---|---|
P-MoS2-0.2 | 0.1 mol·L-1 KOH | 0.96 | 0.80 | 3.60 | [ |
I-PdSe2-50 | 0.1 mol·L-1 KOH | - | 0.76 | 3.67 | [ |
Ag/MoS2 | 0.1 mol·L-1 KOH | 0.90 | 0.83 | 3.98 | [ |
2H+1T-FeSe@NC | 1.0 mol·L-1 KOH | 0.97 | 0.80 | 3.90 | [ |
O-MoS2-87 | 0.1 mol·L-1 KOH | 0.94 | 0.80 | 3.49 | [ |
Table 1 Properties of typical 2D TMDs-based ORR catalysts
Catalyst | Electrolyte | Onset potential / V (vs. RHE) | Half-wave potential / V (vs. RHE) | Electrons transfer number, n | Ref. |
---|---|---|---|---|---|
P-MoS2-0.2 | 0.1 mol·L-1 KOH | 0.96 | 0.80 | 3.60 | [ |
I-PdSe2-50 | 0.1 mol·L-1 KOH | - | 0.76 | 3.67 | [ |
Ag/MoS2 | 0.1 mol·L-1 KOH | 0.90 | 0.83 | 3.98 | [ |
2H+1T-FeSe@NC | 1.0 mol·L-1 KOH | 0.97 | 0.80 | 3.90 | [ |
O-MoS2-87 | 0.1 mol·L-1 KOH | 0.94 | 0.80 | 3.49 | [ |
Fig. 4 M-position doping for 2D TMDs[53,55] (a) ORR energy barrier for Pt-MoSe2 with insets showing crystal structures[53] ; (b) TEM images of Pt-SAs/2D TMDs prepared by galvanic replacement[55]
Fig. 5 X-position doping of 2D TMDs[45,61] (a) ORR polarization curves of P-MoS2 in 0.1 mol·L-1 KOH[45]; (b) Corresponding possible reaction mechanism[61]
Fig. 6 (a) Preparative schematic illustration by phase conversion from 2H-MoS2, (b) ORR polarization curves in 0.1 mol·L-1 KOH, and (c) corresponding K-L plots of 1T-MoS2[68] Colorful figures are available on website
Fig. 7 Defect and strain engineering of 2D TMDs[46,49,65] (a) TEM images and (b) O1s XPS spectra of defected I-PdSe2[46]; (c) Schematic illustration of synthesis of O-MoS2 (d) ORR polarization curves in 0.1 mol·L-1 KOH of O-MoS2[49]; (e) AFM (left) and TEM (middle and right) images of 2H-1T WS2 showing the formation of strain[65]
Catalyst | Electrolyte | Onset potential / V (vs. RHE) | Half-wave potential / V (vs. RHE) | Electrons transfer number, n | Ref. |
---|---|---|---|---|---|
Pt/MoS2-rGO | 0.1 mol·L-1 HClO4 | 0.90 | 0.80 | - | [ |
MoS2-CNT | 0.1 mol·L-1 KOH | 0.65 | - | ~4.00 | [ |
MoS2/S-PC | 0.5 mol·L-1 H2SO4 | - | 0.86 | 4.00 | [ |
Ni3S2/MoS2 | 0.1 mol·L-1 KOH | 0.95 | 0.88 | 3.99 | [ |
hBN-MoS2 | 0.1 mol·L-1 KOH | 0.80 | 0.60 | 4.00 | [ |
FePc-MoS2 | 0.1 mol·L-1 KOH | - | 0.89 | 4.00 | [ |
Table 2 Properties of typical 2D TMDs heterostructures-based ORR catalysts
Catalyst | Electrolyte | Onset potential / V (vs. RHE) | Half-wave potential / V (vs. RHE) | Electrons transfer number, n | Ref. |
---|---|---|---|---|---|
Pt/MoS2-rGO | 0.1 mol·L-1 HClO4 | 0.90 | 0.80 | - | [ |
MoS2-CNT | 0.1 mol·L-1 KOH | 0.65 | - | ~4.00 | [ |
MoS2/S-PC | 0.5 mol·L-1 H2SO4 | - | 0.86 | 4.00 | [ |
Ni3S2/MoS2 | 0.1 mol·L-1 KOH | 0.95 | 0.88 | 3.99 | [ |
hBN-MoS2 | 0.1 mol·L-1 KOH | 0.80 | 0.60 | 4.00 | [ |
FePc-MoS2 | 0.1 mol·L-1 KOH | - | 0.89 | 4.00 | [ |
Fig. 8 2D TMDs@carbon materials heterostructure ORR catalysts[85,92] (a) TEM images and (b) activity variations of Pt/MoS2-rGO[85]; (c) SEM image and (d) power density of microbial fuel cells based on N-MoS2/C catalysts[92] Colorful figures are available on website
Fig. 9 Other 2D TMDs-based heterostructure ORR catalysts[88⇓-90] (a) TEM image of Ni3S2/MoS2 and (b) corresponding ORR polarization curves in 0.1 mol·L-1 KOH[88]; (c) TEM image of hBN/MoS2 and its (d) ORR durability test[89]; (e) Structure of FePc-MoS2 and (f) its integrated partial density of states IPDOS[90]
[1] |
HAO C, LIU Z R, LIU W, et al. Research progress of carbon- supported metal single atom catalysts for oxygen reduction reaction. Journal of Inorganic Materials, 2021, 36(8): 820-834.
DOI |
[2] | RAHMAN M A, WANG X J, WEN C E. High energy density metal-air batteries: a review. Journal of The Electrochemical Society, 2013, 160(10): A1759-A1771. |
[3] |
LIU Z Y, ZHAO Z P, PENG B S, et al. Beyond extended surfaces: understanding the oxygen reduction reaction on nanocatalysts. Journal of the American Chemical Society, 2020, 142(42): 17812-17827.
DOI URL |
[4] |
XIANG J, LIU B, LIU B, et al. A self-terminated electrochemical fabrication of electrode pairs with angstrom-sized gaps. Electrochemistry Communications, 2006, 8(4): 577-580.
DOI URL |
[5] |
TIAN X L, ZHAO X, SU Y Q, et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366(6467): 850-856.
DOI URL |
[6] |
LI M F, ZHAO Z P, CHENG T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354(6318): 1414-1419.
DOI URL |
[7] |
ZENG R R, WANG K, SHAO W, et al. Investigation on the coordination mechanism of Pt-containing species and qualification of the alkaline content during Pt/C preparation via a solvothermal polyol method. Chinese Journal of Catalysis, 2020, 41(5): 820-829.
DOI URL |
[8] |
WANG J J, YIN G P, SHAO Y Y, et al. Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 2007, 171(2): 331-339.
DOI URL |
[9] |
JIMÉNEZ-MORALES I, REYES-CARMONA A, DUPONT M, et al. Correlation between the surface characteristics of carbon supports and their electrochemical stability and performance in fuel cell cathodes. Carbon Energy, 2021, 3(4): 654-665.
DOI URL |
[10] | KONG F P, SHI W Z, SONG Y J, et al. Surface/near-surface structure of highly active and durable Pt-based catalysts for oxygen reduction reaction: a review. Advanced Energy and Sustainability Research, 2021, 2(7): 2100025. |
[11] |
JIANG Y F, YANG L J, SUN T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catalysis, 2015, 5(11): 6707-6712.
DOI URL |
[12] |
LAI Q X, ZHENG J, TANG Z M, et al. Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angewandte Chemie International Edition, 2020, 59(29): 11999-12006.
DOI URL |
[13] |
LANG X Y, HAN G F, XIAO B B, et al. Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Advanced Functional Materials, 2015, 25(2): 230-237.
DOI URL |
[14] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.
DOI URL |
[15] | LI D D, LI T, HAO G Y, et al. IrO2 nanoparticle-decorated single- layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chemical Engineering Journal, 2020, 399: 125738. |
[16] |
LI R, WANG S H, CHEN X X, et al. Highly anisotropic and water molecule-dependent proton conductivity in a 2D homochiral copper(II) metal-organic framework. Chemistry of Materials, 2017, 29(5): 2321-2331.
DOI URL |
[17] |
WANG Z T, LI H, YAN S C, et al. Synthesis of a two-dimensional covalent organic framework with the ability of conducting proton along skeleton. Acta Chimica Sinica, 78(1): 63-68.
DOI URL |
[18] | WANG X, RAGHUPATHY R K M, QUEREBILLO C J, et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Advanced Materials, 2021, 33(20): 2008752. |
[19] |
LIN Y, CONNELL J W. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale, 2012, 4(22): 6908-6939.
DOI URL |
[20] |
LI Y B, QIN Y Q, CHEN K, et al. Molten salt synthesis of nanolaminated Sc2SnC MAX phase. Journal of Inorganic Materials, 2021, 36(7): 773-778.
DOI URL |
[21] |
WANG S S, YU Y, ZHANG S Q, et al. Atomic-scale studies of overlapping grain boundaries between parallel and quasi-parallel grains in low-symmetry monolayer ReS2. Matter, 2020, 3(6): 2108-2123.
DOI URL |
[22] |
DING J H, ZHAO H R, ZHAO X P, et al. How semiconductor transition metal dichalcogenides replaced graphene for enhancing anticorrosion. Journal of Materials Chemistry A, 2019, 7(22): 13511-13521.
DOI URL |
[23] |
ZHU C R, GAO D Q, DING J, et al. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47(12): 4332-4356.
DOI URL |
[24] |
XIAO Y, ZHOU M Y, LIU J L, et al. Phase engineering of two- dimensional transition metal dichalcogenides. Science China Materials, 2019, 62(6): 759-775.
DOI URL |
[25] | LIU D Y, HONG J H, LI X B, et al. Synthesis of 2H-1T′ WS2-ReS2 heterophase structures with atomically sharp interface via hydrogen- triggered one-pot growth. Advanced Functional Materials, 2020, 30(16): 1910169. |
[26] |
SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271-1275.
DOI URL |
[27] |
BALASUBRAMANYAM S, SHIRAZI M, BLOODGOOD M A, et al. Edge-site nanoengineering of WS2 by low-temperature plasma- enhanced atomic layer deposition for electrocatalytic hydrogen evolution. Chemistry of Materials, 2019, 31(14): 5104-5115.
DOI URL |
[28] |
SARMA P V, KAYAL A, SHARMA C H, et al. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano, 2019, 13(9): 10448-10455.
DOI URL |
[29] |
LIU J Y, JIANG X, LI X T, et al. Time- and momentum-resolved image-potential states of 2H-MoS2 surface. Physical Chemistry Chemical Physics, 2021, 23(46): 26336-26342.
DOI URL |
[30] |
JIANG X, ZHENG Q J, LAN Z G, et al. Real-time GW-BSE investigations on spin-valley exciton dynamics in monolayer transition metal dichalcogenide. Science Advances, 7(10): eabf3759.
DOI URL |
[31] | JING Q H, ZHANG H, HUANG H, et al. Ultrasonic exfoliated ReS2nanosheets: fabrication and use as co-catalyst for enhancing photocatalytic efficiency of TiO2 nanoparticles under sunlight. Nanotechnology, 2019, 30(18): 184001. |
[32] |
LI H, YIN Z Y, HE Q Y, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small, 2012, 8(1): 63-67.
DOI URL |
[33] |
ZHANG Q Y, MEI L, CAO X H, et al. Intercalation and exfoliation chemistries of transition metal dichalcogenides. Journal of Materials Chemistry A, 2020, 8(31): 15417-15444.
DOI URL |
[34] |
LI S W, LIU Y C, ZHAO X D, et al. Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high- performance aqueous Zn-ion storage. Angewandte Chemie International Edition, 2021, 60(37): 20286-20293.
DOI URL |
[35] |
CHEN X Y, WANG Z M, WEI Y Z, et al. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angewandte Chemie International Edition, 2019, 58(49): 17621-17624.
DOI URL |
[36] |
VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12(6): 554-561.
DOI URL |
[37] |
ZHOU J D, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556(7701): 355-359.
DOI URL |
[38] |
WANG S S, RONG Y M, FAN Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chemistry of Materials, 2014, 26(22): 6371-6379.
DOI URL |
[39] | ZHANG Y, YAO Y Y, SENDEKU M G, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Advanced Materials, 2019, 31(41): 1901694. |
[40] |
HUANG H W, LI K, CHEN Z, et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. Journal of the American Chemical Society, 2017, 139(24): 8152-8159.
DOI URL |
[41] |
NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
DOI URL |
[42] |
CUI Y, ZHOU C W, LI X Z, et al. High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochimica Acta, 2017, 228: 428-435.
DOI URL |
[43] | WU L F, DZADE N Y, CHEN N, et al. Cu electrodeposition on nanostructured MoS2 and WS2and implications for HER active site determination. Journal of The Electrochemical Society, 2020, 167(11): 116517. |
[44] | WANG Z W, LI W L, ZHENG Y P, et al. How does the active site in the MoSe2 surface affect its electrochemical performance as anode material for metal-ion batteries? Applied Surface Science, 2020, 526: 146637. |
[45] |
HUANG H, FENG X, DU C C, et al. High-quality phosphorus- doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity. Chemical Communications, 2015, 51(37): 7903-7906.
DOI URL |
[46] |
KOH S W, HU J, HWANG J M, et al. Two-dimensional palladium diselenide for the oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5(13): 4970-4980.
DOI URL |
[47] | VATTIKUTI S V P, NAGAJYOTHI P C, DEVARAYAPALLI K C, et al. Hybrid Ag/MoS2 nanosheets for efficient electrocatalytic oxygen reduction. Applied Surface Science, 2020, 526: 146751. |
[48] |
CAO Y F, HUANG S C, PENG Z Q, et al. Phase control of ultrafine FeSe nanocrystals in a N-doped carbon matrix for highly efficient and stable oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9(6): 3464-3471.
DOI URL |
[49] |
HUANG H, FENG X, DU C C, et al. Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis. Journal of Materials Chemistry A, 2015, 3(31): 16050-16056.
DOI URL |
[50] |
SARKAR D, XIE X J, KANG J H, et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Letters, 2015, 15(5): 2852-2862.
DOI URL |
[51] | CHEN E, XU W, CHEN J, et al. 2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications. Materials Today Advances, 2020, 7: 100076. |
[52] | SOLOMON G, KOHAN M G, VAGIN M, et al. Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81: 105664. |
[53] |
UPADHYAY S N, PAKHIRA S. Mechanism of electrochemical oxygen reduction reaction at two-dimensional Pt-doped MoSe2 material: an efficient electrocatalyst. Journal of Materials Chemistry C, 2021, 9(34): 11331-11342.
DOI URL |
[54] |
HWANG J, NOH S H, HAN B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Applied Surface Science, 2019, 471: 545-552.
DOI URL |
[55] |
SHI Y, MA Z R, XIAO Y Y, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nature Communications, 2021, 12(1): 3021.
DOI URL |
[56] |
SHI Y, WANG J, WANG C, et al. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. Journal of the American Chemical Society, 2015, 137(23): 7365-7370.
DOI URL |
[57] |
CHEN Z X, LENG K, ZHAO X X, et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8(1): 14548.
DOI URL |
[58] |
QI K, YU S S, WANG Q Y, et al. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4(11): 4025-4031.
DOI URL |
[59] |
TIAN S F, TANG Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. Journal of Materials Chemistry C, 2021, 9(18): 6040-6050.
DOI URL |
[60] |
ZHANG H Y, TIAN Y, ZHAO J X, et al. Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N- and P-doping. Electrochimica Acta, 2017, 225: 543-550.
DOI URL |
[61] |
LIU C, DONG H L, JI Y J, et al. Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: a theoretical study. Scientific Reports, 2018, 8(1): 13292.
DOI URL |
[62] |
WANG H T, TSAI C, KONG D S, et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research, 2015, 8(2): 566-575.
DOI URL |
[63] |
GAO C, RAO D W, YANG H, et al. Dual transition-metal atoms doping: an effective route to promote the ORR and OER activity on MoTe2. New Journal of Chemistry, 2021, 45(12): 5589-5595.
DOI URL |
[64] |
GONG Y J, YUAN H T, WU C L, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nature Nanotechnology, 2018, 13(4): 294-299.
DOI URL |
[65] |
VOIRY D, YAMAGUCHI H, LI J W, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12(9): 850-855.
DOI URL |
[66] |
WANG Y Y, WANG M R, LU Z S, et al. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T′- MoS2 with anchored transition metal single atoms. Nanoscale, 2021, 13(31): 13390-13400.
DOI URL |
[67] | ZHAO B, SHEN D Y, ZHANG Z C, et al. 2D metallic transition- metal dichalcogenides: structures, synthesis, properties, and applications. Advanced Functional Materials, 2021, 31(48): 2105132. |
[68] |
SADIGHI Z, LIU J P, ZHAO L, et al. Metallic MoS2 nanosheets: multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries. Nanoscale, 2018, 10(47): 22549-22559.
DOI URL |
[69] |
LIN Y C, DUMCENCO D O, HUANG Y S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single- layered MoS2. Nature Nanotechnology, 2014, 9(5): 391-396.
DOI URL |
[70] |
LIN Y C, DUMCENCO D O, KOMSA H P, et al. Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Advanced Materials, 2014, 26(18): 2857-2861.
DOI URL |
[71] | DING W, HU L, DAI J M, et al. Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields. ACS Nano, 2019, 13(2): 1694-1702. |
[72] |
PRABHU P, JOSE V, LEE J M. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter, 2020, 2(3): 526-553.
DOI URL |
[73] | WANG S, ZHANG D, LI B, et al. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Advanced Energy Materials, 2018, 8(25): 1801345. |
[74] |
YIN Y, HAN J C, ZHANG Y M, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. Journal of the American Chemical Society, 2016, 138(25): 7965-7972.
DOI URL |
[75] |
ZHU J, WANG Z C, DAI H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nature Communications, 2019, 10(1): 1348.
DOI URL |
[76] |
MENG Y N, GAO Y, LI K, et al. Vacancy-induced oxygen reduction activity in Janus transition metal dichalcogenides. ChemElectroChem, 2020, 7(20): 4233-4238.
DOI URL |
[77] |
YANG J, WANG Z Y, HUANG C X, et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angewandte Chemie International Edition, 2021, 60(42): 22722-22728.
DOI URL |
[78] | XU X, LIANG T, KONG D, et al. Strain engineering of two- dimensional materials for advanced electrocatalysts. Materials Today Nano, 2021, 14: 100111. |
[79] |
ZHAO S Y, WANG K, ZOU X L, et al. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12(4): 925-930.
DOI URL |
[80] |
LI H, CONTRYMAN A W, QIAN X F, et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nature Communications, 2015, 6(1): 7381.
DOI URL |
[81] | TIWARI A P, YOON Y, NOVAK T G, et al. Lattice strain formation through spin-coupled shells of MoS2 on Mo2C for bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts. Advanced Materials Interfaces, 2019, 6(22): 1900948. |
[82] |
HAN C, WANG Y D, LEI Y P. Recent progress on nano-heterostructure photocatalysts for solar fuels generation. Journal of Inorganic Materials, 2015, 30(11): 1121-1130.
DOI URL |
[83] |
MAO Y H, MA X C, WU D X, et al. Interfacial polarons in van der Waals heterojunction of monolayer SnSe2 on SrTiO3 (001). Nano Letters, 2020, 20(11): 8067-8073.
DOI URL |
[84] | LIU Y, ZHAO G J, ZHANG J X, et al. First-principles investigation on the interfacial interaction and electronic structure of BiVO4/WO3 heterostructure semiconductor material. Applied Surface Science, 2021, 549: 149309. |
[85] |
ANWAR M T, YAN X H, ASGHAR M R, et al. MoS2-rGO hybrid architecture as durable support for cathode catalyst in proton exchange membrane fuel cells. Chinese Journal of Catalysis, 2019, 40(8): 1160-1167.
DOI URL |
[86] |
LEE C, OZDEN S, TEWARI C S, et al. MoS2-carbon nanotube porous 3D network for enhanced oxygen reduction reaction. ChemSusChem, 2018, 11(17): 2960-2966.
DOI URL |
[87] |
PARK H S, HAN S B, KWAK D H, et al. Sulfur-doped porphyrinic carbon nanostructures synthesized with amorphous MoS2 for the oxygen reduction reaction in an acidic medium. ChemSusChem, 2017, 10(10): 2202-2209.
DOI URL |
[88] |
MAO J X, LIU P, DU C C, et al. Tailoring 2D MoS2 heterointerfaces for promising oxygen reduction reaction electrocatalysis. Journal of Materials Chemistry A, 2019, 7(15): 8785-8789.
DOI URL |
[89] |
ROY D, PANIGRAHI K, DAS B K, et al. Boron vacancy: a strategy to boost the oxygen reduction reaction of hexagonal boron nitride nanosheet in hBN-MoS2 heterostructure. Nanoscale Advances, 2021, 3(16): 4739-4749.
DOI URL |
[90] |
KWON I S, KWAK I H, KIM J Y, et al. Two-dimensional MoS2/Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale, 2019, 11(30): 14266-14275.
DOI URL |
[91] |
XIN S L, LIU Z Q, MA L, et al. Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Research, 2016, 9(12): 3795-3811.
DOI URL |
[92] |
HAO L, YU J, XU X, et al. Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells. Journal of Power Sources, 2017, 339: 68-79.
DOI URL |
[93] |
SHANG X, YAN K L, LIU Z Z, et al. Oxidized carbon fiber supported vertical WS2 nanosheets arrays as efficient 3D nanostructure electrocatalyts for hydrogen evolution reaction. Applied Surface Science, 2017, 402: 120-128.
DOI URL |
[94] | CHENG C, HE B W, FAN J J, et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Advanced Materials, 2021, 33(22): 2100317. |
[95] | CHEN J L, QIAN G F, ZHANG H, et al. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Advanced Functional Materials, 2022, 32(5): 2107597. |
[96] | SUN L, WANG B, WANG Y D. High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi- heterojunctions. ACS Applied Materials & Interfaces, 2020, 12(19): 21808-21817. |
[97] | HE L H, CUI B B, LIU J M, et al. Fabrication of porous CoOx/mC@MoS2 composite Loaded on g-C3N4 nanosheets as a highly efficient dual electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9257-9268. |
[98] | CHUONG N D, THANH T D, KIM N H, et al. Hierarchical heterostructures of ultrasmall Fe2O3-encapsulated MoS2/N-graphene as an effective catalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2018, 10(29): 24523-24532. |
[99] | BAI J M, MENG T, GUO D L, et al. Co9S8@MoS2 core-shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Applied Materials & Interfaces, 2018, 10(2): 1678-1689. |
[100] |
LI W M, YU A P, HIGGINS D C, et al. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of the American Chemical Society, 2010, 132(48): 17056-17058.
DOI URL |
[101] |
SAMANTA M, GHOSH S, MUKHERJEE M, et al. Enhanced electrocatalytic oxygen reduction reaction from organic-inorganic heterostructure. International Journal of Hydrogen Energy, 2022, 47(10): 6710-6720.
DOI URL |
[102] |
ZHOU X L, HAO H, ZHANG Y J, et al. Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision. Chem, 2021, 7(6): 1626-1638.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | LIU Lei, GUO Ruihua, WANG Li, WANG Yan, ZHANG Guofang, GUAN Lili. Oxygen Reduction Reaction on Pt3Co High-index Facets by Density Functional Theory [J]. Journal of Inorganic Materials, 2025, 40(1): 39-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||