Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (2): 140-151.DOI: 10.15541/jim20200073
Special Issue: 电致变色材料与器件; 功能材料论文精选(2021); 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION: Electrochromic Materials and Devices (Contributing Editor: DIAO Xungang, WANG Jinmin) • Previous Articles Next Articles
FANG Huajing1(), ZHAO Zetian1, WU Wenting1, WANG Hong2(
)
Received:
2020-02-16
Revised:
2020-05-05
Published:
2021-02-20
Online:
2020-08-01
About author:
FANG Huajing(1989-), male, associate professor. E-mail: fanghj@xjtu.edu.cn
Supported by:
CLC Number:
FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 140-151.
Fig. 1 W18O49 nanowires and Ag NWs by solvothermal preparation co-assembled on PET substrate to obtain flexible color-changing film[4] (a) Schematic illustration of the curved Ag and W18O49 NW film with electrochromic property; (b,c) The film attached on the curved surface of the beaker before (bleached state) and after (colored state) applying voltage; (d) In situ electrical resistance change of flexible electrochromic film after 0, 100, 200, 300, 500, and 1000 bending cycles; (e) Switching behaviors of the ECD after 0, 100, 200, 300, 400, 500, and 1000 bending cycles
Materials | Switching time/s | Coloration efficiency/(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 | 10.3/7.4 | 35.7 | 60 | 1000 | 12 | [4] |
WO3/Ag/WO3 | 11/10.5 | 136 | 53 | 3000 | 15 | [10] |
WO3 | 3.5/8.4 | 60.1 | 73.3 | 200 | 5 | [11] |
WO3-NiVOx | 6/5 | - | 42 | 8000 | 75 | [15] |
WO3 | 30 | 139 | 49 | 1000 | - | [16] |
WO3 | 9/19 | 58.95 | 89.7 | 300 | 2 | [17] |
MoO3 | 6.2/10.9 | 34.7 | 27.7 | 150 | 11 | [19] |
NiOx-WO3 | - | 20-35 | 60 | 125 | 36 | [22] |
WO3-ZnO | 6.2/2.8 | 80.6 | 68.2 | - | - | [23] |
Prussian blue -WO3 | <10 | - | 52.4 | 2250 | - | [28] |
Table 1 Performance comparison of inorganic FECD
Materials | Switching time/s | Coloration efficiency/(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 | 10.3/7.4 | 35.7 | 60 | 1000 | 12 | [4] |
WO3/Ag/WO3 | 11/10.5 | 136 | 53 | 3000 | 15 | [10] |
WO3 | 3.5/8.4 | 60.1 | 73.3 | 200 | 5 | [11] |
WO3-NiVOx | 6/5 | - | 42 | 8000 | 75 | [15] |
WO3 | 30 | 139 | 49 | 1000 | - | [16] |
WO3 | 9/19 | 58.95 | 89.7 | 300 | 2 | [17] |
MoO3 | 6.2/10.9 | 34.7 | 27.7 | 150 | 11 | [19] |
NiOx-WO3 | - | 20-35 | 60 | 125 | 36 | [22] |
WO3-ZnO | 6.2/2.8 | 80.6 | 68.2 | - | - | [23] |
Prussian blue -WO3 | <10 | - | 52.4 | 2250 | - | [28] |
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
PANI | 40/20 | 22.9 | 34 | 200 cycles | 6 | [34] |
PANI | 3.9/2.61 | 80.9 | 49 | 500 cycles | 10 | [35] |
PEDOT | 4.1/3.4 | - | 21 | 10000 cycles | 20 | [38] |
PEDOT: PSS | 4.6/2 | 429 | 45 | 4000 cycles | - | [39] |
ethyl viologen | 41/395 | 117.7 | 92.1 | 60000 s | 12.5 | [43] |
monoheptyl-viologen/diheptylviologen/diphenyl-viologen | 20/34 | 87.3 | 25 | 3600 s | 10 | [44] |
FeL | 3.6/7.3 | 299.8 | 41 | 250 cycles | - | [47] |
MEPE | 2/26 | 445 | 40.1 | - | 10 | [48] |
Poly[Ni(salen)]-type polymer | 157/145 | 130.4 | 88.7 | 3000 cycles | - | [49] |
Table 2 Performance comparison of organic FECD
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
PANI | 40/20 | 22.9 | 34 | 200 cycles | 6 | [34] |
PANI | 3.9/2.61 | 80.9 | 49 | 500 cycles | 10 | [35] |
PEDOT | 4.1/3.4 | - | 21 | 10000 cycles | 20 | [38] |
PEDOT: PSS | 4.6/2 | 429 | 45 | 4000 cycles | - | [39] |
ethyl viologen | 41/395 | 117.7 | 92.1 | 60000 s | 12.5 | [43] |
monoheptyl-viologen/diheptylviologen/diphenyl-viologen | 20/34 | 87.3 | 25 | 3600 s | 10 | [44] |
FeL | 3.6/7.3 | 299.8 | 41 | 250 cycles | - | [47] |
MEPE | 2/26 | 445 | 40.1 | - | 10 | [48] |
Poly[Ni(salen)]-type polymer | 157/145 | 130.4 | 88.7 | 3000 cycles | - | [49] |
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 NWs-PEDOT:PSS | 18.2/6.6 | 118.1 | 34.3 | - | 2.5 | [50] |
PEDOT:PSS-WO3 | 1.9/2.8 | 124.5 | 81.9 | 2000 | 20 | [52] |
WO3·2H2O-PEDOT | 4.4/2.6 | 180.2 | 63.1 | - | - | [53] |
Viologen-TiO2 | 8/6 | 226 | 53 | 1000 | - | [54] |
Ag NW/Ni(OH)2-PEIE/PEDOT:PSS | 0.3/0.6 | 517 | 30 | 100 | 1 | [55] |
Table 3 Performance comparison of inorganic/organic composite FECD
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 NWs-PEDOT:PSS | 18.2/6.6 | 118.1 | 34.3 | - | 2.5 | [50] |
PEDOT:PSS-WO3 | 1.9/2.8 | 124.5 | 81.9 | 2000 | 20 | [52] |
WO3·2H2O-PEDOT | 4.4/2.6 | 180.2 | 63.1 | - | - | [53] |
Viologen-TiO2 | 8/6 | 226 | 53 | 1000 | - | [54] |
Ag NW/Ni(OH)2-PEIE/PEDOT:PSS | 0.3/0.6 | 517 | 30 | 100 | 1 | [55] |
Fig. 6 ECD on household PE cling wrap[61] (a) Schematic illustration of the structure of the PE cling wrap-based hybrid EC film; (b) The color-changing e-skin (top) and PE cling wrap (bottom)
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
WO3/Ag/PEDOT:PSS/WO3 | 1.82/0.75 | - | 23 | 30000 s | 5 | [61] |
Heptyl Viologen | 32/43 | 31.82 | 74.5 | 100 cycles | 4.8 | [63] |
WO3 nanotube / PEDOT: PSS | <10 | 83.9 | 37.7 | 20000 cycles | 40 | [65] |
WO3-PANI | 4.1/2.1 | 75.5 | 40 | 500 cycles | 5 | [66] |
poly(3-methylthiophene)/Prussian blue | 1.3/1.2 | 201.6 | 17.8 | 180 cycles | 2.5 | [67] |
copolymer DFTPA-PI-MA | 5.3/12.2 | 82.2 | 60 | 100 cycles | - | [69] |
Table 4 Performance comparison of stretchable electrochromic devices
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
WO3/Ag/PEDOT:PSS/WO3 | 1.82/0.75 | - | 23 | 30000 s | 5 | [61] |
Heptyl Viologen | 32/43 | 31.82 | 74.5 | 100 cycles | 4.8 | [63] |
WO3 nanotube / PEDOT: PSS | <10 | 83.9 | 37.7 | 20000 cycles | 40 | [65] |
WO3-PANI | 4.1/2.1 | 75.5 | 40 | 500 cycles | 5 | [66] |
poly(3-methylthiophene)/Prussian blue | 1.3/1.2 | 201.6 | 17.8 | 180 cycles | 2.5 | [67] |
copolymer DFTPA-PI-MA | 5.3/12.2 | 82.2 | 60 | 100 cycles | - | [69] |
[1] |
GU H X, GUO C S, ZHANG S H, et al. Highly efficient, near-infrared and visible-light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano, 2018,12(1):559-567.
URL PMID |
[2] | FANG H J, ZHENG P Y, MA R, et al. Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Materials Horizons, 2018,5(5):1000-1007. |
[3] | JIA H X, CAO X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524. |
[4] |
WANG J L, LU Y R, LI H H, et al. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc., 2017,139(29):9921-9926.
URL PMID |
[5] |
CHEN X D, ROGERS J A, LACOUR STÉPHANIE P,et al. Materials chemistry in flexible electronics. Chemical Society Reviews, 2019,48(6):1431-1433.
DOI URL PMID |
[6] | WEI W, MAN W, MA J M, et al. Electrochromic metal oxides: recent progress and prospect. Advanced Electronic Materials, 2018,4(8):1800185. |
[7] | EH L S, TAN A W M, CHENG X, et al. Recent advances in flexible electrochromic devices: the prerequisites, challenges and prospects. Energy Technology, 2018,6(1):33-45. |
[8] | MA D Y, WANG J M. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China Chemistry, 2017,60(1):62-70. |
[9] | HE H Y, CHEN A L, CHEN X Y, et al. Pretreatment optimization of silver nanowire based transparent electrode and its application in flexible electrochromic devices. Journal of Synthetic Crystals, 2015,44(7):149-154. |
[10] | LI H L, LV Y, ZHANG X, et al. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials and Solar Cells, 2015,136:86-91. |
[11] |
XIAO L L, LÜ Y, DONG W J, et al. Dual-functional WO3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties. ACS Applied Materials & Interfaces, 2016,8(40):27107-27114.
DOI URL PMID |
[12] | EREN E, KARACA G Y, KOC U, et al. Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films, 2017,634:40-50. |
[13] | KOC U, KARACA G Y, OKSUZ A U, et al. RF sputtered electrochromic wool textile in different liquid media. Journal of Materials Science-Materials in Electronics, 2017,28(12):8725-8732. |
[14] | LIU Q R, DONG G B, XIAO Y, et al. An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Materials Letters, 2015,142:232-234. |
[15] | TANG C J, YE J M, YANG Y T, et al. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOx/ITO electrochromic devices prepared by using magnetron sputter deposition. Optical Materials, 2016,55:83-89. |
[16] | COSSARI P, CANNAVALE A, GAMBINO S, et al. Room temperature processing for solid-state electrochromic devices on single substrate: from glass to flexible plastic. Solar Energy Materials and Solar Cells, 2016,155:411-420. |
[17] | WANG Y A, MENG Z H, CHEN H, et al. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices. Journal of Materials Chemistry C, 2019,7(7):1966-1973. |
[18] | XU Z J, LI W F, HUANG J N, et al. Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018,6(40):19584-19589. |
[19] | LIU Y, LÜ Y, TANG Z B, et al. Highly stable and flexible ITO- free electrochromic films with bi-functional stacked MoO3/Ag/MoO3 structures. Electrochimica Acta, 2016,189:184-189. |
[20] | ZHANG H J, JEON K W, SEO D K. Equipment-free deposition of graphene-based molybdenum oxide nanohybrid Langmuir Blodgett films for flexible electrochromic panel application. ACS Applied Materials & Interfaces, 2016,8(32):21539-21544. |
[21] | BODUROV G, STEFCHEV P, IVANOVA T. Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in smart windows. Mater. Lett., 2014,117:270-272. |
[22] | DONG D M, WANG W W, GUO B, et al. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices prepared by reactive DC magnetron sputtering. Applied Surface Science, 2016,383:49-56. |
[23] | BI Z J, LI X M, CHEN Y B, et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochimica Acta, 2017,227:61-68. |
[24] |
HEO S, KIM J, ONG G K, et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Letters, 2017,17(9):5756-5761.
URL PMID |
[25] | LEE S J, LEE T G, NAHM S, et al. Investigation of all-solid-state electrochromic devices with durability enhanced tungsten-doped nickel oxide as a counter electrode. Journal of Alloys and Compounds, 2020,815:152399. |
[26] | LI H, VIENNEAU G, JONES M, et al. Crack-free 2D-inverse opal anatase TiO2 films on rigid and flexible transparent conducting substrates: low temperature large area fabrication and electrochromic properties. Journal of Materials Chemistry C, 2014,2(37):7804-7810. |
[27] | WU J, QIU D, ZHANG H L, et al. Flexible electrochromic V2O5 thin films with ultrahigh coloration efficiency on graphene electrodes. Journal of the Electrochemical Society, 2018,165(5):183-189. |
[28] | WANG J Y, WANG M C, JAN D J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2017,160:476-483. |
[29] |
ZHANG X W, JING Y, ZHAI Q F, et al. Point-of-care diagnoses: flexible patterning technique for self-powered wearable sensors. Analytical Chemistry, 2018,90(20):11780-11784.
DOI URL PMID |
[30] | QIU M J, SUN P, LIU Y J, et al. Visualized UV photodetectors based on prussian blue/TiO2 for smart irradiation monitoring application. Advanced Materials Technologies, 2018,3(2):1700288. |
[31] | MACHER S, SCHOTT M, SASSI M, et al. New roll-to-roll processable PEDOT-based polymer with colorless bleached state for flexible electrochromic devices. Advanced Functional Materials, 2020,30(6):1906254. |
[32] | DIAZ-SANCHEZ J, ROSAS-ABURTO A, VIVALDO-LIMA E, et al. Development and characterization of a flexible electrochromic device based on polyaniline and enzymatically synthesized poly (gallic acid). Synthetic Metals, 2017,223:43-48. |
[33] | AN T C, LING Y Z, GONG S, et al. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Advanced Materials Technologies, 2019,4:1800473. |
[34] | CHE B Y, ZHOU D, LI H, et al. A highly bendable transparent electrode for organic electrochromic devices. Organic Electronics, 2019,66:86-93. |
[35] | ZHOU K L, WANG H, JIU J T, et al. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chemical Engineering Journal, 2018,345:290-299. |
[36] | ZHANG S H, CHEN S, HU F, et al. Patterned flexible electrochromic device based on monodisperse silica/polyaniline core/shell nanospheres. Journal of the Electrochemical Society, 2019,166(8):H343-H350. |
[37] | LI X B, ZHANG L P, WANG B, et al. Highly-conductive porous poly(ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance. Electrochimica Acta, 2020,332:135357. |
[38] |
DENG B, HSU P C, CHEN G C, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Letters, 2015,15(6):4206-4213.
DOI URL PMID |
[39] |
SINGH R, THARION J, MURUGAN S, et al. ITO-free solution- processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode. ACS Applied Materials & Interfaces, 2017,9(23):19427-19435.
DOI URL PMID |
[40] | KIM K W, LEE S B, KIM S H, et al. Spray-coated transparent hybrid electrodes for high-performance electrochromic devices on plastic. Organic Electronics, 2018,62:151-156. |
[41] | SANGLEE K, CHUANGCHOTE S, CHAIWIWATWORAKUL P, , et al. PEDOT: PSS nanofilms fabricated by a nonconventional coating method for uses as transparent conducting electrodes in flexible electrochromic devices. Journal of Nanomaterials. 2017(4): 5176481-1-8. |
[42] | OH H, SEO D G, YUN T Y, et al. Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Applied Materials & Interfaces, 2017,9(8):7658-7665. |
[43] | SEO D G, MOON H C. Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Advanced Functional Materials, 2018,28(14):1706948. |
[44] | KIM J W, MYOUNG J M. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Advanced Functional Materials, 2019,29(13):1808911. |
[45] | VINUALES A, ALESANCO Y, CABANERO G, et al. Incorporating paper matrix into flexible devices based on liquid electrochromic mixtures: enhanced robustness, durability and multi- color versatility. Solar Energy Materials and Solar Cells, 2017,167:22-27. |
[46] | MOON H C, LODGE T P, FRISBIE C D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chemistry of Materials, 2015,27(4):1420-1425. |
[47] | ZHANG B, LI X, GONG G, et al. Preparation and stability of flexible electrochromic devices based on metal supramolecular polymers. Journal of Beijing Institute of Clothing Technology, 2018,38(4):13-20. |
[48] |
CHEN B H, KAO S Y, HU C W, et al. Printed multicolor high-contrast electrochromic devices. ACS Applied Materials & Interfaces, 2015,7:25069-25076.
DOI URL PMID |
[49] |
NUNES M, ARAUJO M, FONSECA J, et al. High performance electrochromic devices based on poly[Ni(salen)]-type polymer films. ACS Applied Materials & Interfaces, 2016,8(22):14231-14243.
DOI URL PMID |
[50] | LI K R, ZHANG Q H, WANG H Z, et al. Light weight, highly bendable and foldable electrochromic films based on all-solution- processed bilayer nanowire networks. Journal of Materials Chemistry C, 2016,4(24):5849-5857. |
[51] | LI G Q, GAO L X, LI L D, et al. An electrochromic and self- healing multi-functional supercapacitor based on PANI/nw-WO2.7/ Au NPs electrode and hydrogel electrolyte. Journal of Alloys and Compounds, 2019,786:40-49. |
[52] | CAI G F, DARMAWAN P, CUI M Q, et al. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Advanced Energy Materials, 2015,6(4):1501882. |
[53] | QU H Y, ZHANG X, ZHANG H C, et al. Highly robust and flexible WO3·2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Solar Energy Materials and Solar Cells, 2017,163:23-30. |
[54] | ALESANCO Y, PALENZUELA J, TENA-ZAERA R, et al. Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperature. Solar Energy Materials and Solar Cells, 2016,157:624-635. |
[55] | GINTING R T, OVHAL M M, KANG J W. A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors. Nano Energy, 2018,53:650-657. |
[56] | WADE C R, Li M, DINCA M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angew. Chem. Int. Ed., 2013,52:13377-13381. |
[57] |
MJEJRI I, DOHERTY C M, RUBIO-MARTINEZ M, et al. Double-sided electrochromic device based on metal-organic frameworks. ACS Appl. Mater. Interfaces, 2017,9(46):39930-39934.
DOI URL PMID |
[58] |
JIANG Q, CHEN M, LI J, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano, 2017,11:1073-1079.
DOI URL PMID |
[59] | SALLES P, PINTO D, HANTANASIRISAKUL K, et al. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater., 2019,29:1809223. |
[60] | CHAUDHARI A K, SOUZA B E, TAN J C. Electrochromic thin films of Zn-based MOF-74 nanocrystals facilely grown on flexible conducting substrates at room temperature. APL Materials, 2019,7(8):081101. |
[61] | LIU Q, XU Z J, QIU W, et al. Ultraflexible, stretchable and fast- switching electrochromic devices with enhanced cycling stability. RSC Advances, 2018,8:18690-18697. |
[62] | CHEN W H, LI F W, LIOU G S. Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes. Advanced Optical Materials, 2019,7(19):1900632. |
[63] |
LIU H S, PAN B C, LIOU G S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale, 2017,9(7):2633-2639.
URL PMID |
[64] |
VARGHESE HANSEN R, YANG J L, ZHENG L X. Flexible electrochromic materials based on CNT/PDA hybrids. Advances in Colloid and Interface Science, 2018,258:21-35.
DOI URL PMID |
[65] |
YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano, 2019,13(3):3141-3150.
DOI URL PMID |
[66] | CAI G F, PARK S, CHENG X, et al. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Science And Technology of Advanced Materials, 2018,19(1):759-770. |
[67] | KIM D S, PARK H, HONG S Y, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019,471:300-308. |
[68] | ZHAO P F, CHEN H L, LI B, et al. Stretchable electrochromic devices enabled via shape memory alloy composites (SMAC) for dynamic camouflage. Optical Materials, 2019,94:378-386. |
[69] |
ZHENG R Z, WANG Y, JIA C Y, et al. Intelligent biomimetic chameleon skin with excellent self-healing and electrochromic properties. ACS Applied Materials & Interfaces, 2018,10(41):35533-35538.
DOI URL PMID |
[70] | WU Q, ZHANG G G, CHEN H X, et al. The state-of-the-art flexible electrochromic material. Journal of Functional Materials, 2019,50(10):10040-10046. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||