Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (2): 140-151.DOI: 10.15541/jim20200073
Special Issue: 电致变色材料与器件; 功能材料论文精选(2021); 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION: Electrochromic Materials and Devices (Contributing Editor: DIAO Xungang, WANG Jinmin) • Previous Articles Next Articles
FANG Huajing1(), ZHAO Zetian1, WU Wenting1, WANG Hong2(
)
Received:
2020-02-16
Revised:
2020-05-05
Published:
2021-02-20
Online:
2020-08-01
About author:
FANG Huajing(1989-), male, associate professor. E-mail: fanghj@xjtu.edu.cn
Supported by:
CLC Number:
FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices[J]. Journal of Inorganic Materials, 2021, 36(2): 140-151.
Fig. 1 W18O49 nanowires and Ag NWs by solvothermal preparation co-assembled on PET substrate to obtain flexible color-changing film[4] (a) Schematic illustration of the curved Ag and W18O49 NW film with electrochromic property; (b,c) The film attached on the curved surface of the beaker before (bleached state) and after (colored state) applying voltage; (d) In situ electrical resistance change of flexible electrochromic film after 0, 100, 200, 300, 500, and 1000 bending cycles; (e) Switching behaviors of the ECD after 0, 100, 200, 300, 400, 500, and 1000 bending cycles
Materials | Switching time/s | Coloration efficiency/(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 | 10.3/7.4 | 35.7 | 60 | 1000 | 12 | [4] |
WO3/Ag/WO3 | 11/10.5 | 136 | 53 | 3000 | 15 | [10] |
WO3 | 3.5/8.4 | 60.1 | 73.3 | 200 | 5 | [11] |
WO3-NiVOx | 6/5 | - | 42 | 8000 | 75 | [15] |
WO3 | 30 | 139 | 49 | 1000 | - | [16] |
WO3 | 9/19 | 58.95 | 89.7 | 300 | 2 | [17] |
MoO3 | 6.2/10.9 | 34.7 | 27.7 | 150 | 11 | [19] |
NiOx-WO3 | - | 20-35 | 60 | 125 | 36 | [22] |
WO3-ZnO | 6.2/2.8 | 80.6 | 68.2 | - | - | [23] |
Prussian blue -WO3 | <10 | - | 52.4 | 2250 | - | [28] |
Table 1 Performance comparison of inorganic FECD
Materials | Switching time/s | Coloration efficiency/(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 | 10.3/7.4 | 35.7 | 60 | 1000 | 12 | [4] |
WO3/Ag/WO3 | 11/10.5 | 136 | 53 | 3000 | 15 | [10] |
WO3 | 3.5/8.4 | 60.1 | 73.3 | 200 | 5 | [11] |
WO3-NiVOx | 6/5 | - | 42 | 8000 | 75 | [15] |
WO3 | 30 | 139 | 49 | 1000 | - | [16] |
WO3 | 9/19 | 58.95 | 89.7 | 300 | 2 | [17] |
MoO3 | 6.2/10.9 | 34.7 | 27.7 | 150 | 11 | [19] |
NiOx-WO3 | - | 20-35 | 60 | 125 | 36 | [22] |
WO3-ZnO | 6.2/2.8 | 80.6 | 68.2 | - | - | [23] |
Prussian blue -WO3 | <10 | - | 52.4 | 2250 | - | [28] |
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
PANI | 40/20 | 22.9 | 34 | 200 cycles | 6 | [34] |
PANI | 3.9/2.61 | 80.9 | 49 | 500 cycles | 10 | [35] |
PEDOT | 4.1/3.4 | - | 21 | 10000 cycles | 20 | [38] |
PEDOT: PSS | 4.6/2 | 429 | 45 | 4000 cycles | - | [39] |
ethyl viologen | 41/395 | 117.7 | 92.1 | 60000 s | 12.5 | [43] |
monoheptyl-viologen/diheptylviologen/diphenyl-viologen | 20/34 | 87.3 | 25 | 3600 s | 10 | [44] |
FeL | 3.6/7.3 | 299.8 | 41 | 250 cycles | - | [47] |
MEPE | 2/26 | 445 | 40.1 | - | 10 | [48] |
Poly[Ni(salen)]-type polymer | 157/145 | 130.4 | 88.7 | 3000 cycles | - | [49] |
Table 2 Performance comparison of organic FECD
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
PANI | 40/20 | 22.9 | 34 | 200 cycles | 6 | [34] |
PANI | 3.9/2.61 | 80.9 | 49 | 500 cycles | 10 | [35] |
PEDOT | 4.1/3.4 | - | 21 | 10000 cycles | 20 | [38] |
PEDOT: PSS | 4.6/2 | 429 | 45 | 4000 cycles | - | [39] |
ethyl viologen | 41/395 | 117.7 | 92.1 | 60000 s | 12.5 | [43] |
monoheptyl-viologen/diheptylviologen/diphenyl-viologen | 20/34 | 87.3 | 25 | 3600 s | 10 | [44] |
FeL | 3.6/7.3 | 299.8 | 41 | 250 cycles | - | [47] |
MEPE | 2/26 | 445 | 40.1 | - | 10 | [48] |
Poly[Ni(salen)]-type polymer | 157/145 | 130.4 | 88.7 | 3000 cycles | - | [49] |
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 NWs-PEDOT:PSS | 18.2/6.6 | 118.1 | 34.3 | - | 2.5 | [50] |
PEDOT:PSS-WO3 | 1.9/2.8 | 124.5 | 81.9 | 2000 | 20 | [52] |
WO3·2H2O-PEDOT | 4.4/2.6 | 180.2 | 63.1 | - | - | [53] |
Viologen-TiO2 | 8/6 | 226 | 53 | 1000 | - | [54] |
Ag NW/Ni(OH)2-PEIE/PEDOT:PSS | 0.3/0.6 | 517 | 30 | 100 | 1 | [55] |
Table 3 Performance comparison of inorganic/organic composite FECD
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability/cycles | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
W18O49 NWs-PEDOT:PSS | 18.2/6.6 | 118.1 | 34.3 | - | 2.5 | [50] |
PEDOT:PSS-WO3 | 1.9/2.8 | 124.5 | 81.9 | 2000 | 20 | [52] |
WO3·2H2O-PEDOT | 4.4/2.6 | 180.2 | 63.1 | - | - | [53] |
Viologen-TiO2 | 8/6 | 226 | 53 | 1000 | - | [54] |
Ag NW/Ni(OH)2-PEIE/PEDOT:PSS | 0.3/0.6 | 517 | 30 | 100 | 1 | [55] |
Fig. 6 ECD on household PE cling wrap[61] (a) Schematic illustration of the structure of the PE cling wrap-based hybrid EC film; (b) The color-changing e-skin (top) and PE cling wrap (bottom)
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
WO3/Ag/PEDOT:PSS/WO3 | 1.82/0.75 | - | 23 | 30000 s | 5 | [61] |
Heptyl Viologen | 32/43 | 31.82 | 74.5 | 100 cycles | 4.8 | [63] |
WO3 nanotube / PEDOT: PSS | <10 | 83.9 | 37.7 | 20000 cycles | 40 | [65] |
WO3-PANI | 4.1/2.1 | 75.5 | 40 | 500 cycles | 5 | [66] |
poly(3-methylthiophene)/Prussian blue | 1.3/1.2 | 201.6 | 17.8 | 180 cycles | 2.5 | [67] |
copolymer DFTPA-PI-MA | 5.3/12.2 | 82.2 | 60 | 100 cycles | - | [69] |
Table 4 Performance comparison of stretchable electrochromic devices
Materials | Switching time/s | Coloration efficiency /(cm2·C-1) | Transmittance modulation/% | Stability | Bending radius/mm | Ref. |
---|---|---|---|---|---|---|
WO3/Ag/PEDOT:PSS/WO3 | 1.82/0.75 | - | 23 | 30000 s | 5 | [61] |
Heptyl Viologen | 32/43 | 31.82 | 74.5 | 100 cycles | 4.8 | [63] |
WO3 nanotube / PEDOT: PSS | <10 | 83.9 | 37.7 | 20000 cycles | 40 | [65] |
WO3-PANI | 4.1/2.1 | 75.5 | 40 | 500 cycles | 5 | [66] |
poly(3-methylthiophene)/Prussian blue | 1.3/1.2 | 201.6 | 17.8 | 180 cycles | 2.5 | [67] |
copolymer DFTPA-PI-MA | 5.3/12.2 | 82.2 | 60 | 100 cycles | - | [69] |
[1] |
GU H X, GUO C S, ZHANG S H, et al. Highly efficient, near-infrared and visible-light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano, 2018,12(1):559-567.
URL PMID |
[2] | FANG H J, ZHENG P Y, MA R, et al. Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Materials Horizons, 2018,5(5):1000-1007. |
[3] | JIA H X, CAO X, JIN P S. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020,35(5):511-524. |
[4] |
WANG J L, LU Y R, LI H H, et al. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc., 2017,139(29):9921-9926.
URL PMID |
[5] |
CHEN X D, ROGERS J A, LACOUR STÉPHANIE P,et al. Materials chemistry in flexible electronics. Chemical Society Reviews, 2019,48(6):1431-1433.
DOI URL PMID |
[6] | WEI W, MAN W, MA J M, et al. Electrochromic metal oxides: recent progress and prospect. Advanced Electronic Materials, 2018,4(8):1800185. |
[7] | EH L S, TAN A W M, CHENG X, et al. Recent advances in flexible electrochromic devices: the prerequisites, challenges and prospects. Energy Technology, 2018,6(1):33-45. |
[8] | MA D Y, WANG J M. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China Chemistry, 2017,60(1):62-70. |
[9] | HE H Y, CHEN A L, CHEN X Y, et al. Pretreatment optimization of silver nanowire based transparent electrode and its application in flexible electrochromic devices. Journal of Synthetic Crystals, 2015,44(7):149-154. |
[10] | LI H L, LV Y, ZHANG X, et al. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials and Solar Cells, 2015,136:86-91. |
[11] |
XIAO L L, LÜ Y, DONG W J, et al. Dual-functional WO3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties. ACS Applied Materials & Interfaces, 2016,8(40):27107-27114.
DOI URL PMID |
[12] | EREN E, KARACA G Y, KOC U, et al. Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates. Thin Solid Films, 2017,634:40-50. |
[13] | KOC U, KARACA G Y, OKSUZ A U, et al. RF sputtered electrochromic wool textile in different liquid media. Journal of Materials Science-Materials in Electronics, 2017,28(12):8725-8732. |
[14] | LIU Q R, DONG G B, XIAO Y, et al. An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Materials Letters, 2015,142:232-234. |
[15] | TANG C J, YE J M, YANG Y T, et al. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOx/ITO electrochromic devices prepared by using magnetron sputter deposition. Optical Materials, 2016,55:83-89. |
[16] | COSSARI P, CANNAVALE A, GAMBINO S, et al. Room temperature processing for solid-state electrochromic devices on single substrate: from glass to flexible plastic. Solar Energy Materials and Solar Cells, 2016,155:411-420. |
[17] | WANG Y A, MENG Z H, CHEN H, et al. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices. Journal of Materials Chemistry C, 2019,7(7):1966-1973. |
[18] | XU Z J, LI W F, HUANG J N, et al. Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018,6(40):19584-19589. |
[19] | LIU Y, LÜ Y, TANG Z B, et al. Highly stable and flexible ITO- free electrochromic films with bi-functional stacked MoO3/Ag/MoO3 structures. Electrochimica Acta, 2016,189:184-189. |
[20] | ZHANG H J, JEON K W, SEO D K. Equipment-free deposition of graphene-based molybdenum oxide nanohybrid Langmuir Blodgett films for flexible electrochromic panel application. ACS Applied Materials & Interfaces, 2016,8(32):21539-21544. |
[21] | BODUROV G, STEFCHEV P, IVANOVA T. Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in smart windows. Mater. Lett., 2014,117:270-272. |
[22] | DONG D M, WANG W W, GUO B, et al. Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices prepared by reactive DC magnetron sputtering. Applied Surface Science, 2016,383:49-56. |
[23] | BI Z J, LI X M, CHEN Y B, et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochimica Acta, 2017,227:61-68. |
[24] |
HEO S, KIM J, ONG G K, et al. Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Letters, 2017,17(9):5756-5761.
URL PMID |
[25] | LEE S J, LEE T G, NAHM S, et al. Investigation of all-solid-state electrochromic devices with durability enhanced tungsten-doped nickel oxide as a counter electrode. Journal of Alloys and Compounds, 2020,815:152399. |
[26] | LI H, VIENNEAU G, JONES M, et al. Crack-free 2D-inverse opal anatase TiO2 films on rigid and flexible transparent conducting substrates: low temperature large area fabrication and electrochromic properties. Journal of Materials Chemistry C, 2014,2(37):7804-7810. |
[27] | WU J, QIU D, ZHANG H L, et al. Flexible electrochromic V2O5 thin films with ultrahigh coloration efficiency on graphene electrodes. Journal of the Electrochemical Society, 2018,165(5):183-189. |
[28] | WANG J Y, WANG M C, JAN D J. Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2017,160:476-483. |
[29] |
ZHANG X W, JING Y, ZHAI Q F, et al. Point-of-care diagnoses: flexible patterning technique for self-powered wearable sensors. Analytical Chemistry, 2018,90(20):11780-11784.
DOI URL PMID |
[30] | QIU M J, SUN P, LIU Y J, et al. Visualized UV photodetectors based on prussian blue/TiO2 for smart irradiation monitoring application. Advanced Materials Technologies, 2018,3(2):1700288. |
[31] | MACHER S, SCHOTT M, SASSI M, et al. New roll-to-roll processable PEDOT-based polymer with colorless bleached state for flexible electrochromic devices. Advanced Functional Materials, 2020,30(6):1906254. |
[32] | DIAZ-SANCHEZ J, ROSAS-ABURTO A, VIVALDO-LIMA E, et al. Development and characterization of a flexible electrochromic device based on polyaniline and enzymatically synthesized poly (gallic acid). Synthetic Metals, 2017,223:43-48. |
[33] | AN T C, LING Y Z, GONG S, et al. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Advanced Materials Technologies, 2019,4:1800473. |
[34] | CHE B Y, ZHOU D, LI H, et al. A highly bendable transparent electrode for organic electrochromic devices. Organic Electronics, 2019,66:86-93. |
[35] | ZHOU K L, WANG H, JIU J T, et al. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chemical Engineering Journal, 2018,345:290-299. |
[36] | ZHANG S H, CHEN S, HU F, et al. Patterned flexible electrochromic device based on monodisperse silica/polyaniline core/shell nanospheres. Journal of the Electrochemical Society, 2019,166(8):H343-H350. |
[37] | LI X B, ZHANG L P, WANG B, et al. Highly-conductive porous poly(ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance. Electrochimica Acta, 2020,332:135357. |
[38] |
DENG B, HSU P C, CHEN G C, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Letters, 2015,15(6):4206-4213.
DOI URL PMID |
[39] |
SINGH R, THARION J, MURUGAN S, et al. ITO-free solution- processed flexible electrochromic devices based on PEDOT: PSS as transparent conducting electrode. ACS Applied Materials & Interfaces, 2017,9(23):19427-19435.
DOI URL PMID |
[40] | KIM K W, LEE S B, KIM S H, et al. Spray-coated transparent hybrid electrodes for high-performance electrochromic devices on plastic. Organic Electronics, 2018,62:151-156. |
[41] | SANGLEE K, CHUANGCHOTE S, CHAIWIWATWORAKUL P, , et al. PEDOT: PSS nanofilms fabricated by a nonconventional coating method for uses as transparent conducting electrodes in flexible electrochromic devices. Journal of Nanomaterials. 2017(4): 5176481-1-8. |
[42] | OH H, SEO D G, YUN T Y, et al. Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Applied Materials & Interfaces, 2017,9(8):7658-7665. |
[43] | SEO D G, MOON H C. Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Advanced Functional Materials, 2018,28(14):1706948. |
[44] | KIM J W, MYOUNG J M. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Advanced Functional Materials, 2019,29(13):1808911. |
[45] | VINUALES A, ALESANCO Y, CABANERO G, et al. Incorporating paper matrix into flexible devices based on liquid electrochromic mixtures: enhanced robustness, durability and multi- color versatility. Solar Energy Materials and Solar Cells, 2017,167:22-27. |
[46] | MOON H C, LODGE T P, FRISBIE C D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chemistry of Materials, 2015,27(4):1420-1425. |
[47] | ZHANG B, LI X, GONG G, et al. Preparation and stability of flexible electrochromic devices based on metal supramolecular polymers. Journal of Beijing Institute of Clothing Technology, 2018,38(4):13-20. |
[48] |
CHEN B H, KAO S Y, HU C W, et al. Printed multicolor high-contrast electrochromic devices. ACS Applied Materials & Interfaces, 2015,7:25069-25076.
DOI URL PMID |
[49] |
NUNES M, ARAUJO M, FONSECA J, et al. High performance electrochromic devices based on poly[Ni(salen)]-type polymer films. ACS Applied Materials & Interfaces, 2016,8(22):14231-14243.
DOI URL PMID |
[50] | LI K R, ZHANG Q H, WANG H Z, et al. Light weight, highly bendable and foldable electrochromic films based on all-solution- processed bilayer nanowire networks. Journal of Materials Chemistry C, 2016,4(24):5849-5857. |
[51] | LI G Q, GAO L X, LI L D, et al. An electrochromic and self- healing multi-functional supercapacitor based on PANI/nw-WO2.7/ Au NPs electrode and hydrogel electrolyte. Journal of Alloys and Compounds, 2019,786:40-49. |
[52] | CAI G F, DARMAWAN P, CUI M Q, et al. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Advanced Energy Materials, 2015,6(4):1501882. |
[53] | QU H Y, ZHANG X, ZHANG H C, et al. Highly robust and flexible WO3·2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Solar Energy Materials and Solar Cells, 2017,163:23-30. |
[54] | ALESANCO Y, PALENZUELA J, TENA-ZAERA R, et al. Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperature. Solar Energy Materials and Solar Cells, 2016,157:624-635. |
[55] | GINTING R T, OVHAL M M, KANG J W. A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors. Nano Energy, 2018,53:650-657. |
[56] | WADE C R, Li M, DINCA M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angew. Chem. Int. Ed., 2013,52:13377-13381. |
[57] |
MJEJRI I, DOHERTY C M, RUBIO-MARTINEZ M, et al. Double-sided electrochromic device based on metal-organic frameworks. ACS Appl. Mater. Interfaces, 2017,9(46):39930-39934.
DOI URL PMID |
[58] |
JIANG Q, CHEN M, LI J, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano, 2017,11:1073-1079.
DOI URL PMID |
[59] | SALLES P, PINTO D, HANTANASIRISAKUL K, et al. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater., 2019,29:1809223. |
[60] | CHAUDHARI A K, SOUZA B E, TAN J C. Electrochromic thin films of Zn-based MOF-74 nanocrystals facilely grown on flexible conducting substrates at room temperature. APL Materials, 2019,7(8):081101. |
[61] | LIU Q, XU Z J, QIU W, et al. Ultraflexible, stretchable and fast- switching electrochromic devices with enhanced cycling stability. RSC Advances, 2018,8:18690-18697. |
[62] | CHEN W H, LI F W, LIOU G S. Novel stretchable ambipolar electrochromic devices based on highly transparent AgNW/PDMS hybrid electrodes. Advanced Optical Materials, 2019,7(19):1900632. |
[63] |
LIU H S, PAN B C, LIOU G S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale, 2017,9(7):2633-2639.
URL PMID |
[64] |
VARGHESE HANSEN R, YANG J L, ZHENG L X. Flexible electrochromic materials based on CNT/PDA hybrids. Advances in Colloid and Interface Science, 2018,258:21-35.
DOI URL PMID |
[65] |
YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano, 2019,13(3):3141-3150.
DOI URL PMID |
[66] | CAI G F, PARK S, CHENG X, et al. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Science And Technology of Advanced Materials, 2018,19(1):759-770. |
[67] | KIM D S, PARK H, HONG S Y, et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019,471:300-308. |
[68] | ZHAO P F, CHEN H L, LI B, et al. Stretchable electrochromic devices enabled via shape memory alloy composites (SMAC) for dynamic camouflage. Optical Materials, 2019,94:378-386. |
[69] |
ZHENG R Z, WANG Y, JIA C Y, et al. Intelligent biomimetic chameleon skin with excellent self-healing and electrochromic properties. ACS Applied Materials & Interfaces, 2018,10(41):35533-35538.
DOI URL PMID |
[70] | WU Q, ZHANG G G, CHEN H X, et al. The state-of-the-art flexible electrochromic material. Journal of Functional Materials, 2019,50(10):10040-10046. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | LI Zhongshao, LI Ming, CAO Xun. Broadband-modulated Photochromic Smart Windows Based on Oxygen-containing Gadolinium Hydride Films [J]. Journal of Inorganic Materials, 2024, 39(4): 441-448. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 5233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||