Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (5): 461-468.DOI: 10.15541/jim20180374
Ya-Ping SUN,Hong-Long WANG,Jian CHU,Xu WANG,She-Qi PAN,Ming ZHANG()
Received:
2018-08-15
Revised:
2018-11-29
Published:
2019-05-20
Online:
2019-05-14
Supported by:
CLC Number:
Ya-Ping SUN, Hong-Long WANG, Jian CHU, Xu WANG, She-Qi PAN, Ming ZHANG. Leaching Behavior and Mechanism of Ceramic Waste Forms[J]. Journal of Inorganic Materials, 2019, 34(5): 461-468.
Parameters | Glass | Ceramic |
---|---|---|
Loading of waste/wt% | 10-30 | 15-30 |
Density/(g·cm-3) | 2.5-2.8 | 3.0-5.8 |
Leach rate/(g·cm-2·d-1) | 10-4-10-7 | 10-6-10-10 |
Anti-pressure ability | Low | High |
Radiation tolerance/Gy | 10-9 | ~10-9 |
Table 1 Advantages and disadvantages of glass immobilization and ceramic immobilization[7]
Parameters | Glass | Ceramic |
---|---|---|
Loading of waste/wt% | 10-30 | 15-30 |
Density/(g·cm-3) | 2.5-2.8 | 3.0-5.8 |
Leach rate/(g·cm-2·d-1) | 10-4-10-7 | 10-6-10-10 |
Anti-pressure ability | Low | High |
Radiation tolerance/Gy | 10-9 | ~10-9 |
Mineral | Formula | Immobilized nuclidea |
---|---|---|
Zircon | ZrSiO4 | An |
Titanite | CaTiSiO5 | Ln, An |
Apatite | Ca5(PO4)3(OH, F, O) | U, Th, REE, I, Cs |
Monazite | CePO4 | Ce, La, Eu, Gd, U, LREE |
Xenotime | YPO4 | HREE |
Pyrochlore | CaUTi2O7 | Ln, An |
Baddeleyite | ZrO2 | Ln, An |
Perovskite | CaTiO3 | Sr, REE, Fe, Na, An |
Zirconolite | CaZrTi2O7 | Ln, An, Fe, Ni, Cr, Zr |
Brannerite | UTi2O6 | Ln, An |
Rutile | TiO2 | Zr |
Alkali Psilomelane | BaA12Ti6O16 | Cs, Sr, Ba, Rb, A1 |
Table 2 Main mineral of ceramic waste forms[8]
Mineral | Formula | Immobilized nuclidea |
---|---|---|
Zircon | ZrSiO4 | An |
Titanite | CaTiSiO5 | Ln, An |
Apatite | Ca5(PO4)3(OH, F, O) | U, Th, REE, I, Cs |
Monazite | CePO4 | Ce, La, Eu, Gd, U, LREE |
Xenotime | YPO4 | HREE |
Pyrochlore | CaUTi2O7 | Ln, An |
Baddeleyite | ZrO2 | Ln, An |
Perovskite | CaTiO3 | Sr, REE, Fe, Na, An |
Zirconolite | CaZrTi2O7 | Ln, An, Fe, Ni, Cr, Zr |
Brannerite | UTi2O6 | Ln, An |
Rutile | TiO2 | Zr |
Alkali Psilomelane | BaA12Ti6O16 | Cs, Sr, Ba, Rb, A1 |
Sample | State | Temperature/ ℃ | (SA/V)/ (m-1·g-1) | Duration time/d |
---|---|---|---|---|
MCC-1 | Static | 40, 70, 90 | 10 | 3, 7, 14, 28 |
MCC-2 | Static | 150, 200, 250 | 10 | 3, 7, 14, 28 |
MCC-3 | Static | 90, 150 | 680 | |
MCC-4 | Dynamic | 75 | ||
PCT-A | Static | 90 | 1000 | 7 |
PCT-B | Static | 90 | 1000b | 28 |
PCT-C | Static | 40, 70, 90 | 1000b | 28 |
PCT-D | Static | 90 | 1000b | 56, 182, 364… |
PCT-E | Static | 40, 70, 90 | 1000b | 56, 182, 364… |
Table 3 Standard leaching test methods for nuclear waste forms
Sample | State | Temperature/ ℃ | (SA/V)/ (m-1·g-1) | Duration time/d |
---|---|---|---|---|
MCC-1 | Static | 40, 70, 90 | 10 | 3, 7, 14, 28 |
MCC-2 | Static | 150, 200, 250 | 10 | 3, 7, 14, 28 |
MCC-3 | Static | 90, 150 | 680 | |
MCC-4 | Dynamic | 75 | ||
PCT-A | Static | 90 | 1000 | 7 |
PCT-B | Static | 90 | 1000b | 28 |
PCT-C | Static | 40, 70, 90 | 1000b | 28 |
PCT-D | Static | 90 | 1000b | 56, 182, 364… |
PCT-E | Static | 40, 70, 90 | 1000b | 56, 182, 364… |
Ceramic | Hydration Layer | Second Phase | |||
---|---|---|---|---|---|
Thickness | Method | Constituent | Method | ||
Titanite[ | 100 nm~ | SIMS | TiO2, etc | EDX | |
Zicon[ | ~30 μm~ | EMP | m/t-ZrO2 | EMP | |
Zirconolite[ | 1-90 nm | Calcalationc | Ti-, Zr(OH)4 | ICP-MS | |
Monazite[ | (Sub) nm | BSE | Rhabdophane | Raman | |
Pyrochlore[ | Brannerite, rutile | XRD | |||
Apatite[ | APO4 |
Table 4 The reaction layer and second phase upon ceramics after hydrothermal alteration
Ceramic | Hydration Layer | Second Phase | |||
---|---|---|---|---|---|
Thickness | Method | Constituent | Method | ||
Titanite[ | 100 nm~ | SIMS | TiO2, etc | EDX | |
Zicon[ | ~30 μm~ | EMP | m/t-ZrO2 | EMP | |
Zirconolite[ | 1-90 nm | Calcalationc | Ti-, Zr(OH)4 | ICP-MS | |
Monazite[ | (Sub) nm | BSE | Rhabdophane | Raman | |
Pyrochlore[ | Brannerite, rutile | XRD | |||
Apatite[ | APO4 |
Ref. | Liquid | Temperature/℃ | Pressure/Pa | The influence mode of pressure on Zircon | Conclusion |
---|---|---|---|---|---|
[30] | 0.1 mol/L HCl | 400 | 0-1.5×108 | No significant change of IR | Special SiO2 structure appears under 2.5 kbar |
2.5×108 | The IR peak at 1050 cm-1 splitting into 1049 cm-1 and 1087 cm-1 | ||||
[31] | 2 mol/L Na2CO3 | 400 | 0 | 33.1×10-7 mol/g 206Pb, 101×10-7 mol/g 238U | Pressure may accelerate the penetration of liquid into zircon matrix at 400 ℃ |
1×108 | 11.4×10-7 mol/g 206Pb, 19.2×10-7 mol/g 238U | ||||
5×108 | 0.18×10-7 mol/g 206Pb, 82.0×10-7 mol/g 238U | ||||
800 | 1×108 | 0.67×10-7 mol/g 206Pb, 126.0×10-7 mol/g 238U | Little variation of U in zircon, but significant variation for Pb | ||
5×108 | 0.68×10-7 mol/g 206Pb, 92.4×10-7 mol/g238U |
Table 5 Effect of pressure on alteration upon zircon
Ref. | Liquid | Temperature/℃ | Pressure/Pa | The influence mode of pressure on Zircon | Conclusion |
---|---|---|---|---|---|
[30] | 0.1 mol/L HCl | 400 | 0-1.5×108 | No significant change of IR | Special SiO2 structure appears under 2.5 kbar |
2.5×108 | The IR peak at 1050 cm-1 splitting into 1049 cm-1 and 1087 cm-1 | ||||
[31] | 2 mol/L Na2CO3 | 400 | 0 | 33.1×10-7 mol/g 206Pb, 101×10-7 mol/g 238U | Pressure may accelerate the penetration of liquid into zircon matrix at 400 ℃ |
1×108 | 11.4×10-7 mol/g 206Pb, 19.2×10-7 mol/g 238U | ||||
5×108 | 0.18×10-7 mol/g 206Pb, 82.0×10-7 mol/g 238U | ||||
800 | 1×108 | 0.67×10-7 mol/g 206Pb, 126.0×10-7 mol/g 238U | Little variation of U in zircon, but significant variation for Pb | ||
5×108 | 0.68×10-7 mol/g 206Pb, 92.4×10-7 mol/g238U |
Ref. | Radiated material | Effect of radiation damage on leaching rate | Conclusion |
---|---|---|---|
[35] | Incorporate radionuclides with short half-lives, 238Pu (87.7 years) and 244Cm (17.6 years) | The leaching rates (×10-3, g/(m2?d) of synthetic rock containing 1wt% Cm is 100 times of that containing 4×10-4wt% Cm | Effective |
Compared the samples containing 238Pu (regard as irradiated damage) with samples containing 239Pu (2.41×104 years half-life, regard as no-radiation damage), the leaching rates of Pyrochlore (12.35wt% PuO2, 20.82wt% UO2), Pyrochlore-Rich Baseline (1.88wt% PuO2, 23.67wt% UO2), Zirconolite (7.39wt% PuO2) appear with approximately equal (3.2×10-4 g/(m2?d)) | Little effective | ||
[36] | Natural minerals containing radionuclides | The leaching rate of Zr from irradiated zircon (1.8×10-2 g/(m2?d) is 10-100 times than that of undamaged zircon | Effective |
[37] | Accelerator ion implantation | The dissolution rate of pyrochlore bombarded by heavy ion is 50 times higher than that of non-bombarded | Effective |
Table 6 Chemical durability study of ceramic containing radiation damage
Ref. | Radiated material | Effect of radiation damage on leaching rate | Conclusion |
---|---|---|---|
[35] | Incorporate radionuclides with short half-lives, 238Pu (87.7 years) and 244Cm (17.6 years) | The leaching rates (×10-3, g/(m2?d) of synthetic rock containing 1wt% Cm is 100 times of that containing 4×10-4wt% Cm | Effective |
Compared the samples containing 238Pu (regard as irradiated damage) with samples containing 239Pu (2.41×104 years half-life, regard as no-radiation damage), the leaching rates of Pyrochlore (12.35wt% PuO2, 20.82wt% UO2), Pyrochlore-Rich Baseline (1.88wt% PuO2, 23.67wt% UO2), Zirconolite (7.39wt% PuO2) appear with approximately equal (3.2×10-4 g/(m2?d)) | Little effective | ||
[36] | Natural minerals containing radionuclides | The leaching rate of Zr from irradiated zircon (1.8×10-2 g/(m2?d) is 10-100 times than that of undamaged zircon | Effective |
[37] | Accelerator ion implantation | The dissolution rate of pyrochlore bombarded by heavy ion is 50 times higher than that of non-bombarded | Effective |
[1] |
WANG J, SU R, CHEN W M , et al. Deep geological disposal of high-level radioactive wastes in China. Chinese Journal of Rock Mechanics & Engineering, 2006,25(4):649-658.
DOI URL |
[2] |
EWING R C . Long-term storage of spent nuclear fuel. Nature Materials, 2015,14(3):252-257.
DOI URL PMID |
[3] |
谭宏斌, 李玉香 . 放射性废物固化方法综述. 云南环境科学, 2004,23(4):1-3.
DOI URL |
[4] |
CHEN F Y, JIE W Q, DELBERT E D . Corrosion property of iron phosphate simulated HLW melts. Journal of Inorganic Materials, 2000,15(4):653-659.
DOI URL |
[5] |
EWING R C . Nuclear waste forms for actinides. Proc. Nat. Acad. Sci., 1999,96(7):3432-3439.
DOI URL PMID |
[6] | WANG L L, XIE H, CHEN Q Y , et al. Synthesis and charaterization of thorium-doped Nd2Zr2O7 pyrochlore. Journal of Inorganic Materials, 2015,30(1):81-86. |
[7] |
DONALD I W, METCALFE B L, TAYLOR R N J . The immobilization of high level radioactive wastes using ceramics and glasses. Journal of Materials Science, 1997,32(22):5851-5887.
DOI URL |
[8] |
何涌 . 高放废液玻璃固化体和矿物固化体性质的比较. 辐射防护, 2001,21(1):43-47.
DOI URL |
[9] |
HAYWARD P J, CECCHETTO E V . Development of sphene-based glass ceramics tailored for canadian waste disposal conditions. Mater. Res. Soc. Symp. Proc., 1981,6:91-97.
DOI URL |
[10] | 盛嘉伟, 罗上庚, 汤宝龙 . 高放废液的玻璃固化及固化体的浸出行为与发展情况. 硅酸盐学报, 1997,25(1):83-88. |
[11] | 张华 . 高放固化体处置条件下的浸出和模型研究. 北京: 中国原子能科学研究院博士学位论文, 2004. |
[12] | MENDEL J E . Nuclear Waste Materials Characterization Center. Topp S V, Semiannual progress report, PNL-5683 America, 1985: 1-54. |
[13] | C1285-02, Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT). |
[14] |
吴萍萍, 张骋, 徐海芳 , 等. 玻璃固化体抗浸蚀性能实验研究进展. 现代技术陶瓷, 2010,31(3):28-34.
DOI URL |
[15] | EJ/1186-2005, 放射性废物体和废物包的特性鉴定. |
[16] |
KÖHLER S J, HAROUIYA N, CHAÏRAT C , et al. Experimental studies of REE fractionation during water-mineral interactions: REE release rates during apatite dissolution from pH 2.8 to 9.2. Chem. Geol., 2005,222(3/4):168-182.
DOI URL |
[17] | ICENHOWER J P, STRACHAN D M, LINDBERG M J , et al. Dissolution kinetics of titanate-based ceramic waste forms: results from single-pass flow tests on radiation damaged specimens. United States: N.p., DOI: 10.2172/15003935. |
[18] |
HAYWARD P J, WATSON D G, MCILWAIN A K , et al. Leaching studies of sphene ceramics containing substituted radionuclides. Nuclear and Chemical Waste Management, 1986,6(1):71-80.
DOI URL |
[19] | GEISLER T, PIDGEON R T, KURTZ R , et al. Experimental hydrothermal alteration of partially metamict zircon. Am. Mineral., 2003,88(10):1496-1513. |
[20] |
TOULHOAT N, TOULHOAT N, MONCOFFRE N , et al. Enhancement of zirconolite dissolution due to water radiolysis . MRS Proceedings, 2006, 985: 0985-NN09-04.
DOI URL |
[21] |
BERGER A, GNOS E, JANOTS E , et al. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem. Geol., 2008,254(3):238-248.
DOI URL |
[22] |
张华, 杨建文, 李宝军 , 等. 富烧绿石在模拟处置条件下的浸出行为研究. 核化学与放射化学, 2004,26(2):65-70.
DOI URL |
[23] |
FRUGIER P, MARTIN C, RIBET I , et al. The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ.[J]. Nucl. Mater., 2005,346(2/3):194-207.
DOI URL |
[24] | PIRLET V. Influence of the near-field conditions on the mobile concentrations of Np and Tc leached from vitrified HLW. MRS Proceedings, 2004, 824: CC7. 5. |
[25] | 李鹏, 丁新更, 杨辉 , 等. 钙钛锆石玻璃陶瓷体的晶化和抗浸出性能. 硅酸盐学报, 2012,40(2):324-328. |
[26] |
盛嘉伟, 罗上庚, 汤宝龙 , 等. 90-19/U模拟高放玻璃固化体的浸出特性评价. 核化学与放射化学, 1995,17(1):1-6.
DOI URL |
[27] |
SHIN H Y, PARK H, YOO K . The effect of temperature on the leaching of monazite obtained from heavy mineral sands. Geosystem Engineering, 2012,15(2):118-122.
DOI URL |
[28] | HAWTHORNE F C, GROAT L A, RAUDSEPP M , et al. Alpha- decay damage in titanite. Am. Mineral., 1991,76(3/4):370-396. |
[29] | 滕元成, 曾冲盛, 任雪潭 , 等. 合成榍石的化学稳定性. 原子能科学技术, 2010,44(1):14-19. |
[30] |
GEISLER T, ZHANG M SALJE E K H, ., Recrystallization of almost fully amorphous zircon under hydrothermal conditions: an infrared spectroscopic study.[J]. Nucl. Mater., 2003,320(3):280-291.
DOI URL |
[31] |
RIZVANOVA N G, GAIDAMAKO I M, LEVCHENKOV O A , et al. Interaction of metamict zircon with fluids of various composition. Geochemistry International, 2007,45(5):465-477.
DOI URL |
[32] | TRIBET M, TOULHOAT N, MONCOFFRE N , et al. Leaching of a zirconolite ceramic waste-form under proton and He 2+ irradiation . Radiochimica Acta, 2008,96(9/10/11):619-624. |
[33] | PÖML P, GEISLER T, COBOS-SABATÉ J , et al. The mechanism of the hydrothermal alteration of cerium- and plutonium-doped zirconolite.[J]. Nucl. Mater., 2011,410(1):10-23. |
[34] |
PÖML P, MENNEKEN M, STEPHAN T , et al. Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crystalline titanate-based pyrochlore. Geochim . Cosmochim Acta., 2007,71(13):3311-3322.
DOI URL |
[35] |
MITAMURA H, MATSUMOTO S, STEWART M W A , et al. α-Decay damage effects in curium-doped titanate ceramic containing sodium-free high-level nuclear waste.[J]. Am. Ceram. Soc., 1994,77(9):2255-2264.
DOI URL |
[36] |
EWING R C, HAAKER R F, LUTZE W . Leachability of zircon as a function of alpha dose. MRS Online Proceeding Library, 1980,11(1):389-397.
DOI URL |
[37] |
BEGG B D, HESS N J, WEBER W J , et al. Heavy-ion irradiation effects on structures and acid dissolution of pyrochlores.[J]. Nucl. Mater., 2001,288(2):208-216.
DOI URL |
[38] |
GEISLER T, TRACHENKO K, RÍOS S , et al. Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. Journal of Physics Condensed Matter, 2003,15(37):1597-1605.
DOI URL |
[39] | SALJE E K H, CHROSCH J, EWING R C . Is “metamictization” of zircon a phase transition? Am. Mineral., 1999,84(7/8):1107-1116. |
[40] |
TRACHENKO K, DOVE M T, SALJE E K H . Reply to comment on 'large swelling and percolation in irradiated zircon'. Journal of Physics Condensed Matter, 2003,15(15):6457-6471.
DOI URL |
[41] | TROCELLIER P, DELMAS R . Chemical durability of zircon. Nuclear Inst and Methods in Physics Research B, 2001,181(1):408-412. |
[42] |
GEISLER T, PIDGEON R T, BRONSWIJK W V , et al. Transport of uranium, thorium, and lead in metamict zircon under low- temperature hydrothermal conditions. Chem. Geol., 2002,191(1):141-154.
DOI URL |
[43] |
GEISLER T, RASHWAN T, RAHN A A , et al. Low-temperature hydrothermal alteration of natural metamict zircons from the eastern desert, Egypt. Mineralogical Magazine, 2003,67(3):485-508.
DOI URL |
[44] | GEISLER T, SCHALTEGGER U, TOMASCHEK F . Re-equilibration of zircon in aqueous fluids and melts. Elements, 2007,3(1):43-50. |
[45] |
ZHANG M, MADDRELL E R, ABRAITIS P K , et al. Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: an infrared and Raman spectroscopic study. Materials Science & Engineering B, 2007,137(1):149-155.
DOI URL |
[46] |
GEISLER T, PÖML P, STEPHAN T , et al. Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore. Am. Mineral., 2005,90(10):1683-1687.
DOI URL |
[47] | GEISLER T, ULONSKA M, SCHLEICHER H , et al. Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contrib. Mineral. Petrol., 2001,141(1):53-65. |
[48] | LIAN J, ZU X T, KUTTY K V G , et al. Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B, 2002, 66(66): 054108-1-5. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||