Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (5): 483-493.DOI: 10.15541/jim20170307
Special Issue: 光伏材料; 乘风破浪的新能源材料
• REVIEW • Previous Articles Next Articles
MENG Xiang-Dong1, YIN Mo1, SHU Ting2, HU Yue1, SUN Meng1, YU Zhao-Liang1,3, LI Hai-Bo1,3
Received:
2017-06-21
Revised:
2017-09-27
Published:
2018-05-20
Online:
2018-04-26
About author:
MENG Xiang-Dong. E-mail: xdmeng@jlnu.edu.cn
Supported by:
CLC Number:
MENG Xiang-Dong, YIN Mo, SHU Ting, HU Yue, SUN Meng, YU Zhao-Liang, LI Hai-Bo. Research Progress on Counter Electrodes of Quantum Dot-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2018, 33(5): 483-493.
CE | QDs | Synthesis method | Electrolyte | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
Cu2S[ | CdSe | Dipping immersion | Polysulfide | 2.72 | 590 | 16.04 | 56 | 5.21 |
PbS[ | CdS/ZnS | SILAR | Polysulfide | 30.00 | 580 | 18.30 | 45 | 4.70 |
CuS[ | CdS | CBD | Polysulfide | 1.04 | 570 | 14.58 | 55 | 4.53 |
CuS[ | CdS/CdSe | Heat-sealed method | Polysulfide | 47.20 | 550 | 16.05 | 49 | 4.32 |
CoS2[ | CdS/CdSe | Thermal sulfidation | Polysulfide | 40.60 | 510 | 14.44 | 56 | 4.16 |
CuS[ | CdS/CdSe | CBD | Polysulfide | 2.70 | 600 | 12.51 | 53 | 4.02 |
CuS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 4.40 | 550 | 13.87 | 51 | 4.01 |
Cu2S[ | CdS&CdSe | Dipping immersion | Polysulfide | 0.65 | 450 | 13.45 | 60 | 3.65 |
PbS[ | CdSe | Dipping immersion | Polysulfide | 130.00 | 550 | 9.28 | 59 | 3.01 |
NiS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 3.16 | 510 | 10.38 | 55 | 2.97 |
CoxSe[ | CdS | Hydrothermal | Polysulfide | 2.68 | 650 | 9.29 | 35 | 2.11 |
FeS[ | CdS | Dipping immersion | Polysulfide | 13.60 | 430 | 9.60 | 43 | 1.76 |
Mo2S[ | CdS、ZnS | Hydrothermal | Polysulfide | / | 480 | 6.22 | 41 | 1.21 |
Table 1 Photoelectric properties of QDSCS with different transition metal electrode
CE | QDs | Synthesis method | Electrolyte | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
Cu2S[ | CdSe | Dipping immersion | Polysulfide | 2.72 | 590 | 16.04 | 56 | 5.21 |
PbS[ | CdS/ZnS | SILAR | Polysulfide | 30.00 | 580 | 18.30 | 45 | 4.70 |
CuS[ | CdS | CBD | Polysulfide | 1.04 | 570 | 14.58 | 55 | 4.53 |
CuS[ | CdS/CdSe | Heat-sealed method | Polysulfide | 47.20 | 550 | 16.05 | 49 | 4.32 |
CoS2[ | CdS/CdSe | Thermal sulfidation | Polysulfide | 40.60 | 510 | 14.44 | 56 | 4.16 |
CuS[ | CdS/CdSe | CBD | Polysulfide | 2.70 | 600 | 12.51 | 53 | 4.02 |
CuS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 4.40 | 550 | 13.87 | 51 | 4.01 |
Cu2S[ | CdS&CdSe | Dipping immersion | Polysulfide | 0.65 | 450 | 13.45 | 60 | 3.65 |
PbS[ | CdSe | Dipping immersion | Polysulfide | 130.00 | 550 | 9.28 | 59 | 3.01 |
NiS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 3.16 | 510 | 10.38 | 55 | 2.97 |
CoxSe[ | CdS | Hydrothermal | Polysulfide | 2.68 | 650 | 9.29 | 35 | 2.11 |
FeS[ | CdS | Dipping immersion | Polysulfide | 13.60 | 430 | 9.60 | 43 | 1.76 |
Mo2S[ | CdS、ZnS | Hydrothermal | Polysulfide | / | 480 | 6.22 | 41 | 1.21 |
CE | QDs | Synthetic method | Electrolyte | Rct/(?·cm2) | Jsc/mV | Voc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
RGO/Cu2S[ | CdSe | Spin-coating | Polysulfide | 1.61 | 18.40 | 520.00 | 46 | 4.40 |
CuInS2/C[ | CdS/CdSe | Dotor-blading | Polysulfide | 18.79 | 14.16 | 512.00 | 60 | 4.32 |
PbS/CB[ | CdS/CdSe | Dotor-blading | Polysulfide | 10.28 | 13.32 | 509.58 | 58 | 3.91 |
CuS/EC[ | CdS | Hydrothermal | Polysulfide | / | 14.60 | 521.00 | 51 | 3.86 |
CoS/NiS[ | CdS/CdSe | CBD | Polysulfide | 1.97 | 11.15 | 579.00 | 53 | 3.40 |
ZnO/PbS[ | CdSe | SILAR | Polysulfide | 5.20 | 11.17 | 520.00 | 53 | 3.06 |
Table 2 Different composite materials as the electrode assembly QDSCS photoelectric parameters
CE | QDs | Synthetic method | Electrolyte | Rct/(?·cm2) | Jsc/mV | Voc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
RGO/Cu2S[ | CdSe | Spin-coating | Polysulfide | 1.61 | 18.40 | 520.00 | 46 | 4.40 |
CuInS2/C[ | CdS/CdSe | Dotor-blading | Polysulfide | 18.79 | 14.16 | 512.00 | 60 | 4.32 |
PbS/CB[ | CdS/CdSe | Dotor-blading | Polysulfide | 10.28 | 13.32 | 509.58 | 58 | 3.91 |
CuS/EC[ | CdS | Hydrothermal | Polysulfide | / | 14.60 | 521.00 | 51 | 3.86 |
CoS/NiS[ | CdS/CdSe | CBD | Polysulfide | 1.97 | 11.15 | 579.00 | 53 | 3.40 |
ZnO/PbS[ | CdSe | SILAR | Polysulfide | 5.20 | 11.17 | 520.00 | 53 | 3.06 |
CE | QDs | Synthetic method | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|
AuPtNP/RGO | CdSe | Co-reduction | 34.25 | 720 | 15.2 | 41 | 4.50 |
TiN/CNT-GR | CdSe/CdS | SILAR | 14.40 | 642 | 14.0 | 46 | 4.13 |
TiN/CNT | CdSe/CdS | 23.60 | 645 | 13.7 | 44 | 3.89 | |
TiN-GR | CdSe/CdS | 36.60 | 636 | 12.7 | 43 | 3.47 | |
TiN | CdSe/CdS | 123.00 | 609 | 6.6 | 20 | 0.80 | |
CuS/Pt | CdS | Coated reaction method | 424.00 | 567 | 8.0 | 50 | 2.27 |
Table 3 Different hybrid materials as the electrode assembly QDSCS photoelectric parameters[63,64,65]
CE | QDs | Synthetic method | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|
AuPtNP/RGO | CdSe | Co-reduction | 34.25 | 720 | 15.2 | 41 | 4.50 |
TiN/CNT-GR | CdSe/CdS | SILAR | 14.40 | 642 | 14.0 | 46 | 4.13 |
TiN/CNT | CdSe/CdS | 23.60 | 645 | 13.7 | 44 | 3.89 | |
TiN-GR | CdSe/CdS | 36.60 | 636 | 12.7 | 43 | 3.47 | |
TiN | CdSe/CdS | 123.00 | 609 | 6.6 | 20 | 0.80 | |
CuS/Pt | CdS | Coated reaction method | 424.00 | 567 | 8.0 | 50 | 2.27 |
[1] | BAKER D R, KAMAT P V.Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular supportarchitectures.Advanced Functional Materials, 2009, 19(5): 805-811. |
[2] | LEE H, LEVENTIS H C, MOON S J, et al. PbS and CdS quantum dot sensitized solid state solar sells: “old concepts, new results”.Advanced Functional Materials, 2009, 19(17): 2735-2742. |
[3] | LEE W, MIN S, DHAS V,et al. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochemistry Communications, 2009, 11(1): 103-106. |
[4] | SHALOM M, DOR S, RÜHLE S,et al. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. The Journal of Physical Chemistry C, 2009, 113(9): 3895-3898. |
[5] | LEE Y L, CHANG C H.Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells.Journal of Power Sources, 2008, 185(1): 584-588. |
[6] | ROBEL I, SUBRAMANIAN V, KUNO M,et al. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of The American Chemical Society, 2006, 128(7): 2385-2393. |
[7] | DIGUNA L J, SHEN Q, KOBAYASHI J, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters, 2007, 91(2): 023116-1-3. |
[8] | GIMÉNEZ S, MORA I, MACOR L, et al. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20(29): 295204-1-6. |
[9] | CHONG L W, CHIEN H T, LEE Y L.Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications.Journal of Power Sources, 2010, 195(15): 5109-5113. |
[10] | PLASS R, PELET S, KRUEGER J,et al. Quantum dot sensitization of organic-inorganic hybrid solar cells. The Journal of Physical Chemistry B, 2002, 106(31): 7578-7580. |
[11] | SCHALLER R, KLIMOV V. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601-1-4. |
[12] | ZABAN A, MICIC O I, GREGG B A,et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 1998, 14(12): 3153-3156. |
[13] | LAN G Y, LIN Y W, HUANG Y F,et al. Photo-assisted synthesis of highly fluorescent ZnSe (S) quantum dots in aqueous solution. Journal of Chemistry Materials, 2007, 17(25): 2661-2666. |
[14] | SHEN C, SUN L D, KOH Z Y,et al. Cuprous sulfide counter electrodes prepared by ion exchange for high-efficiency quantum dot- sensitized solar cells. Journal of Materials Chemistry A, 2014, 2(48): 2807-2813. |
[15] | KAMAT P V.Quantum dot solar cells. semiconductor nanocrystals as light harvesters.The Journal of Physical Chemistry C, 2008, 112(48): 18737-18753. |
[16] | IVAN M S, JUAN B.Breakthroughs in the development of semiconductor-sensitized solar cells.Physical Chemistry Letters, 2010, 1(20): 3046-3052. |
[17] | ASKHAT N J.Lead sulfide quantum dot-based nanostructured solar cells. München Ludwig Maximilians Universität: Ph.D. dissertation 2014: 81-110. |
[18] | KAMAT P V.Quantum dot solar cells. the next big thing in photovoltaics.Physical Chemistry Letters, 2013, 4(6): 908-918. |
[19] | FAN S Q, FANG B Z, JUNG H K,et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langumuir, 2010, 26(16): 13644-13649. |
[20] | YANG Z, CHEN C Y, LIU C W,et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chemical Communications, 2010, 46(30): 5485-5487. |
[21] | MENG K, CHEN G, THAMPI K R,et al. Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective. Journal of Materials Chemistry A, 2015, 3: 23074-23089. |
[22] | IVÁN M S, SIXTO G, FRANCISCO F S,et al. Recombination in quantum dot sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1848-1857. |
[23] | ZHAO K, YU H J, ZHANG H,et al. Electroplating cuprous sulfide counter electrode for high efficiency long-term stability quantum dot sensitized solar cells . The Journal of Physical Chemistry C, 2014, 118(11): 5683-5690. |
[24] | YANG Y Y, ZHANG Q X,WANG T Z,et al. Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 88(2): 44-50. |
[25] | CHAITANYA K K, RAMI R D, YASHA D,et al. Synthesis of novel Cu2S nanohusks as high performance counter electrode for CdS/CdSe sensitized solar cell. Journal of Power Sources, 2016, 315: 277-283. |
[26] | QUY V H, KIM J H, KANG S H,et al. Enhanced electrocatalytic activity of F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells. Journal of Power Sources, 2016, 316: 53-59. |
[27] | JIANG Y, ZHANG X, GE Q Q,et al. ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum-dot- sensitized solar cells. Nano Letters, 2014, 14(1): 365-372. |
[28] | ZHAO K, PAN Z X, IVAN M S,et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. Journal of the American Chemical Society, 2015, 137(16): 5602-5609. |
[29] | HODES G, MANASSEN J, CAHEN D.Electrocatalytic electrodes for the polysulfide redox system.The Electrochemical Society, 1980, 11(29): 544-549. |
[30] | VICTORIA G P, XU X Q, JAUN B.Modeling high-efficiency quantum dot sensitized solar cells.ACS Nano, 2010, 4(10): 5783-5790. |
[31] | YANG Z, CHEN C Y, LIU C W,et al. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Advanced Energy Materials, 2011, 1(2): 259-264. |
[32] | KIM H J, KO B H, CHANDU V V M G, et al. Facile synthesis of morphology dependent CuS nanoparticle thin film as a highly efficient counter electrode for quantum dot-sensitized solar cells. Journal of Electroanalytical Chemistry, 2017, 791: 95-102. |
[33] | KUNDU M. HASEGAWA T, TERABE K. Effect of sulfurization conditions on structural and electrical properties of copper sulfide films. Journal of Applied Physics, 2008, 103: 073523-1-7. |
[34] | KALANUR S S, CHAE S Y, JOO O S.Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells.Electrochimica Acta, 2013, 103(8): 91-95. |
[35] | SAVARIRAJ A D, VISWANATHAN K K, PRABAKAR K.Influence of Cu vacancy on knit coir mat structured CuS as counter electrode for quantum dot sensitized solar cells.ACS Applied Materials & Interfaces, 2014, 6(22): 19702-19709. |
[36] | WANG F F, DONG H, PAN J L,et al. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum dot sensitized solar cells. The Journal of Physical Chemistry C, 2014, 118(34): 19589-19598. |
[37] | SAVARIRAJ A D, VISWANATHAN K K, PRABAKAR K.CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells.Electrochimica Acta, 2014, 149: 364-369. |
[38] | KIM H J, KIM J H, KUMAR C P,et al. Facile chemical bath deposition of CuS nano peas like structure as a high efficient counter electrode for quantum-dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2015, 739: 20-27. |
[39] | LIN Y B, LIN Y, WU J H, et al. Facile synthesis of porous CuS film as a high efficient counter electrode for quantum-dot-sensitized solar cells. Applied Physics A, 2016, 122: 609-1-6. |
[40] | WANG Y Q, ZHANG Q H, LI Y G,et al. CuxS counter electrodes in-situ prepared via the sulfidation of magnetron sputtering Cu film for quantum dot sensitized solar cells. Journal of Power Sources, 2016, 318: 128-135. |
[41] | CHEN X Q, LI Z, YANG B,et al. Room temperature synthesis of Cu2-xE (E= S, Se) nanotubes with hierarchical architecture as a counter electrodes of quantum dot sensitized solar cells. Chemistry - A European Journal, 2015, 21(3): 1055-1063. |
[42] | ESKANDARI M, AHMADI V.Copper selenide as a new counter electrode for zinc oxide nanorod based quantum dot solar cells.Materials Letters, 2015, 142: 308-311. |
[43] | LIN C Y, TENG C Y, LI T L,et al. Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1(4): 1155-1162. |
[44] | TACHAN Z, SHALOM M, HOD I,et al. PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. The Journal of Physical Chemistry C, 2011, 115(13): 6162-6166. |
[45] | FABER M S, DZIEDZIC R, LUKOWSKI M A,et al. High- performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053-10061. |
[46] | FABER M S, PARK K, CABAN A M,et al. Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. The Journal of Physics Chemical Letters, 2013, 4(11): 1843-1849. |
[47] | MA C Q, TANG Q W, ZHAO Z Y,et al. Bifacial quantum dot-sensitized solar cells with transparent cobalt selenide counter electrodes. Journal of Power Sources, 2015, 278: 183-189. |
[48] | YANG J Q, GUO W, LI D,et al. Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. Journal of Power Sources, 2014, 268: 113-120. |
[49] | KIM H J, KIM D J, RAO S S,et al. Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochimica Acta, 2014, 127: 427-432. |
[50] | CHEN H N, ZHU L Q, LIU H C,et al. Efficient iron sulfide counter electrode for quantum dots-sensitized solar cells . Journal of Power Sources, 2014, 245(1): 406-410. |
[51] | SHANE T F, JANET E M. Petaled molybdenum disulfide surfaces: facile synthesis of a superior cathode for QDSSCs. Advanced Energy Materials, 2014, 4: 1400495-1-6. |
[52] | YU H J, BAO H L, ZHAO K,et al. Topotactically grown bismuth sulfide network film on substrate as low-cost counter electrodes for quantum dot-sensitized solar cells . The Journal of Physical Chemistry C, 2014, 118(30): 16602-16610. |
[53] | RADICH J G, DWYER R, KAMAT P V,et al. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. overcoming the redox limitations of S2-/Sn2- at the counter electrode. The Journal of Physical Chemistry Letters, 2011, 2(19): 2453-2460. |
[54] | ZHU Y Y, CUI H J, JIA S P,et al. 3D graphene frameworks with uniformly dispersed CuS as an efficient catalytic electrode for quantum dot-sensitized solar cells. Electrochimica Acta, 2016, 208: 288-295. |
[55] | MAHMOUD S, SHAGHAYEGH A.Graphene/CuS/PbS nanocomposite as an effective counter electrode for quantum dot sensitized solar cells.Journal of Alloys and Compounds. 2017, 696: 369-375. |
[56] | ZHANG X L, HUANG X M, YANG Y Y,et al. Investigation on new CuInS2/carbon composite counter electrodes for CdS/CdSe cosensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(13): 5954-5960. |
[57] | LI L L, ZHU P N, PENG S J,et al. Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells. The Journal of Physical Chemistry C, 2014, 118(30): 16526-16535. |
[58] | KIM H J, SUH S M, S. RAO S,et al. Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2016, 777: 123-132. |
[59] | PUNNOOSE D, KUMAR C P, RAO S S,et al. In situ synthesis of CuS nano platelets on nano wall networks of Ni foam and its application as an efficient counter electrode for quantum dot sensitized solar cells. Organic Electronics, 2017, 42: 115-122. |
[60] | KIM H J, KIM S W, CHANDU V V M,et al. Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode. Journal of Power Sources, 2014, 268: 163-170. |
[61] | YANG Y Y, ZHU L F, SUN H C,et al. Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Applied Materials & Interfaces, 2012, 4(11): 6162-6168. |
[62] | SONG X H, WANG M Q, DENG J P,et al. ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot- sensitized solar cells. Journal of Power Sources, 2014, 269: 661-670. |
[63] | YOUN D H, SEOL M, KIM J Y,et al. TiN nanoparticles on CNT- graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells. ChemSusChem, 2013, 6: 261-267. |
[64] | RAJ C J, PRABAKAR K, SAVARIRAJ A D,et al. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells. Electrochimica Acta, 2013, 103: 231-236. |
[65] | DAO V D, CHOI Y, YONG K,et al. Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum- dot-sensitized solar cells. Carbon, 2015, 84: 383-389. |
[66] | JUN X U, XIA Y, YANG Q D,et al. Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. The Journal of Physical Chemistry C, 2012, 116(37): 19718-19723. |
[67] | CAO Y B, XIAO Y J, JUNG J Y,et al. Highly electrocatalytic Cu2ZnSn(S1-xSex)4 counter electrodes for quantum-dot-sensitized solar cells. ACS & Interfaces Applied Materials, 2013, 5(3): 479-484. |
[68] | LUO Q, GU Y C, LI J B,et al. Efficient ternary cobalt spinel counter electrodes for quantum-dot sensitized solar cells. Journal of Power Sources, 2016, 312: 93-100. |
[69] | HUANG Z, LIU X Z, LI K X,et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2007, 9(4): 596-598. |
[70] | ZHAO Q, JAMAL, ZHANG LI,et al. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Research Letters, 2014, 9: 557-1-9. |
[71] | YEH M H, LEE C P, CHOU C Y,et al. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta, 2011, 57: 277-284. |
[72] | ZHANG Q X, ZHANG Y D, HUANG S Q,et al. Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communications, 2010, 12(2): 327-330. |
[73] | FAN S Q, FANG B Z, JUNG H K, et al.Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Applied Physics Letters, 2010, 96(6): 063501-1-3. |
[74] | GOURI S P, JUNG H K, KIM M S,et al. Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar Cells, ACS Applied Materials & Interfaces, 2012, 4(1): 375-381. |
[75] | SUDHAGAR P, RAMASAM E Y, CHO W H,et al. Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochemistry Communications, 2011, 13(1): 34-37. |
[76] | DONG J H, JIA S P, CHEN J Z,et al. Nitrogen-doped hollow carbon nanoparticles as efficient counter electrodes in quantum dot sensitized solar cells. Journal of Materials Chemistry, 2012, 22(19): 9745-9750. |
[77] | HAO F, DONG P, ZHANG J,et al. High electrocatalytic activity of vertically aligned single-walled carbon nanotubes towards sulfide redox shuttles. Scientific Reports, 2012, 2(368): 1-6. |
[78] | SEOL M, YOUN D H, KIM J Y, et al. Mo-compound/CNT- graphene composites as efficient catalytic electrodes for quantum- dot-sensitized solar cells. Advanced Energy Materials, 2014, 4(4): 1300775-1-7. |
[79] | JIAO S, DU J, DU Z L,et al. Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. The Journal of Physical Chemistry Letters, 2017, 8(3): 559-564. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||