Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1327-1333.DOI: 10.15541/jim20150200
• Orginal Article • Previous Articles Next Articles
SHAO Chong-Yun1, 2, XU Wen-Bin2, 3, LIU Li-Wan1, 2, YANG Qiu-Hong1, HU Li-Li2, ZHOU Qin-Ling2, WANG Shi-Kai2
Received:
2015-04-24
Revised:
2015-06-16
Published:
2015-12-20
Online:
2015-11-24
About author:
SHAO Chong-Yun. E-mail: shaochongyun@foxmail.com
Supported by:
CLC Number:
SHAO Chong-Yun, XU Wen-Bin, LIU Li-Wan, YANG Qiu-Hong, HU Li-Li, ZHOU Qin-Ling, WANG Shi-Kai. Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses[J]. Journal of Inorganic Materials, 2015, 30(12): 1327-1333.
Sample | Yb2O3 | Al2O3 | P2O5 | K2O | BaO | SiO2 | Al/Yb | Yb2O3(wt-ppm) | |
---|---|---|---|---|---|---|---|---|---|
0#pure silica | — | — | — | — | — | 100 | — | — | |
Al# | 1#Al-1 | — | 1.0 | — | — | — | 99.00 | — | — |
2#Al-4.5 | — | 4.5 | — | — | — | 95.50 | — | — | |
3#AY-0.5-0.05 | 0.05 | 0.5 | — | — | — | 99.45 | 10 | 3259 | |
4#AY-2.5-0.05 | 0.05 | 2.5 | — | — | — | 97.45 | 50 | 3214 | |
Yb# | 5#Yb-0.05 | 0.05 | — | — | — | — | 99.95 | 0 | 3270 |
6#Yb-0.08 | 0.08 | — | — | — | — | 99.92 | 0 | 5324 | |
7#YA-0.05-1 | 0.05 | 1.0 | — | — | — | 98.95 | 20 | 3248 | |
8#YA-0.1-1 | 0.10 | 1.0 | — | — | — | 98.90 | 10 | 6478 | |
9#YA-0.15-1 | 0.15 | 1.0 | — | — | — | 98.85 | 20/3 | 9690 | |
10#MCVD | 0.02 | 0.2 | — | — | — | 99.78 | 10 | 1308 | |
P# | 11#PAY-6-4-0 | — | 4.0 | 6 | — | — | 90.00 | — | — |
12#PAY-1-4-0.1 | 0.10 | 4.0 | 1 | — | — | 94.90 | 40 | 6264 | |
13#PAY-6-4-0.1 | 0.10 | 4.0 | 6 | — | — | 89.90 | 40 | 5881 | |
14#P-65 | 1 | 5.0 | 65 | 5 | 24 | — | 5 | 27594 |
Table1 Compositions of Yb3+/Al3+/P5+-doped silica glasses and reference samples/mol%
Sample | Yb2O3 | Al2O3 | P2O5 | K2O | BaO | SiO2 | Al/Yb | Yb2O3(wt-ppm) | |
---|---|---|---|---|---|---|---|---|---|
0#pure silica | — | — | — | — | — | 100 | — | — | |
Al# | 1#Al-1 | — | 1.0 | — | — | — | 99.00 | — | — |
2#Al-4.5 | — | 4.5 | — | — | — | 95.50 | — | — | |
3#AY-0.5-0.05 | 0.05 | 0.5 | — | — | — | 99.45 | 10 | 3259 | |
4#AY-2.5-0.05 | 0.05 | 2.5 | — | — | — | 97.45 | 50 | 3214 | |
Yb# | 5#Yb-0.05 | 0.05 | — | — | — | — | 99.95 | 0 | 3270 |
6#Yb-0.08 | 0.08 | — | — | — | — | 99.92 | 0 | 5324 | |
7#YA-0.05-1 | 0.05 | 1.0 | — | — | — | 98.95 | 20 | 3248 | |
8#YA-0.1-1 | 0.10 | 1.0 | — | — | — | 98.90 | 10 | 6478 | |
9#YA-0.15-1 | 0.15 | 1.0 | — | — | — | 98.85 | 20/3 | 9690 | |
10#MCVD | 0.02 | 0.2 | — | — | — | 99.78 | 10 | 1308 | |
P# | 11#PAY-6-4-0 | — | 4.0 | 6 | — | — | 90.00 | — | — |
12#PAY-1-4-0.1 | 0.10 | 4.0 | 1 | — | — | 94.90 | 40 | 6264 | |
13#PAY-6-4-0.1 | 0.10 | 4.0 | 6 | — | — | 89.90 | 40 | 5881 | |
14#P-65 | 1 | 5.0 | 65 | 5 | 24 | — | 5 | 27594 |
Fig. 1 Influence of Al3+/Yb3+/P5+-doping on UV absorption spectra of silica glasses. (a) Al3+and Yb3+single doping; (b) Al3+/Yb3+-co-doping with Al3+ ion contents variation; (c) Al3+/Yb3+-co-doping with Yb3+ ion contents variation; (d) Al3+/Yb3+/P5+-co-doping with P5+ ion contents variation
Fig. 2 (a) UV absorption spectra and (b) visible emission spectra under UV excitation of different samples. Al3+/Yb3+-co-doped silica glasses with Al3+ and Yb3+ion contents variation are represented by thick solid line(4#、5#、6#) and dashed line(9#、8#、7#), respectively. Al3+/Yb3+/P5+-co-doped silica glasses with P5+ ion contents variation are represented by thin solid line(12#、13#). The inset in (b) shows an enlargement of the emission intensities of sample
Fig. 3 XPS spectra of Yb4d in different samples. (a) Pure Yb2O3 powder, (b) 8#, (c) 6#, (d) 13#, and (e) 14# samples, Pure Yb2O3 powder and Yb3+ doped phosphate glass(14#) are used as reference samples
Fig. 4 (a)UV absorption spectra and (b) fluorescence spectra under UV excitation of different samples. Sample 6# is Yb3+ single doping, sample 8# is Yb3+/Al3+-co-doping, sample 13# is Yb3+/Al3+/P5+-co-doping with excess P5+ contents. Coordination environment of Yb3+ of those three samples can appear Yb-O-Si, Yb-O-Al, and Yb-O-P, respectively. Sample 10# is a reference sample which is prepared in oxygen atmosphere by MCVD-system to ensure that the Yb ions are in their trivalent state
Sample | Yb-O-M(M=) | EN* | Yb4d BE* /eV | CT band /eV |
---|---|---|---|---|
8# | Al Si | 1.61 1.90 | 186.7 | 5.23 5.80 |
6# | Si | 1.90 | 187.1 | 5.80 |
13# | P | 2.19 | 187.6 | 6.50 |
Table 2 Comparison of structure and spectra for samples of 8#, 6# and 13#
Sample | Yb-O-M(M=) | EN* | Yb4d BE* /eV | CT band /eV |
---|---|---|---|---|
8# | Al Si | 1.61 1.90 | 186.7 | 5.23 5.80 |
6# | Si | 1.90 | 187.1 | 5.80 |
13# | P | 2.19 | 187.6 | 6.50 |
Fig. 5 Schematic configurational coordinate diagrams for the CT-transitions in (a) Yb3+/Al3+-co-doped, (b) Yb3+ singly doped and (c)Yb3+/P3+-co-doped silica glasses
[1] | LEICH M, JUST F, LANGNER A, et al.Highly efficient Yb-doped silica fibers prepared by powder sinter technology.Optics Letters, 2011, 36(9): 1557-1559. |
[2] | WANG S, LOU F, WANG M, et al.Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by Sol-Gel method.Fibers, 2013, 1(3): 93-100. |
[3] | JEONG Y, SAHU J, PAYNE D, et al.Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power.Opt Express, 2004, 12(25): 6088-6092. |
[4] | DESCHAMPS T, OLLIER N, VEZIN H, et al.Clusters dissolution of Yb3+ in co-doped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening.The Journal of Chemical Physics, 2012, 136(1): 14503. |
[5] | COSCELLI E, POLI F, ALKESKJOLD T T, et al. Single-mode design guidelines for 19-Cell double-cladding photonic crystal fibers.Journal of Lightwave Technology, 2012, 30(12): 1909-1914. |
[6] | WANG S, LI Z, YU C, et al.Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by Sol-Gel method.Optical Materials, 2013, 35(9): 1752-1755. |
[7] | UNGER S, SCHWUCHOW A, JETSCHKE S, et al. Optical Properties of Yb-doped Laser Fibers in Dependence on Codopants and Preparation Conditions. International Society for Optics and Photonics, San Jose, CA, 2008: 689016-1-11. |
[8] | ENGHOLM M, NORIN L.Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass.Opt. Express, 2008, 16(2): 1260-1268. |
[9] | KOPONEN J J, HOFFMAN H J, TAMMELA S K.Measuring photodarkening from single-mode ytterbium doped silica fibers.Optics Express, 2006, 14(24): 11539-11544. |
[10] | YOO S, BASU C, BOYLAND A J, et al.Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation.Optics Letters, 2007, 32(12): 1626-1628. |
[11] | ENGHOLM M, NORIN L, ABERG D.Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation.Optics Letters, 2007, 32(22): 3352-3354. |
[12] | MATTSSON K E.Photo darkening of rare earth doped silica. Opt. Express, 2011, 19(21): 19797-19812. |
[13] | RYBALTOVSKY A A, BOBKOV K K, VELMISKIN V V, et al.The Yb-doped Aluminosilicate Fibers Photodarkening Mechanism Based on the Charge-transfer State Excitation. Fiber Laser XI: Technology, Systems, and Applications, 2014, 8961: 896116. |
[14] | KIRCHHOF J, UNGER S, SCHWUCHOWA, et al. Materials for high-power fiber lasers.Journal of Non-Crystalline Solids, 2006, 352(23/24/25): 2399-2403. |
[15] | LOU FENG-GUANG, WANG SHI-KAI, WANG-MENG, et al.Sol-Gel derived Al3+, Yb3+ co-doped silica fiber core.Journal of Inorganic Materials, 2014, 29(4): 393-398. |
[16] | SIGEL G H.Vacuum ultraviolet absorption in alkali doped fused silica and silicate glasses.Journal of Physics and Chemistry of Solids, 1971, 32(10): 2373-2383. |
[17] | KIRCHHOF J, UNGER S, SCHWUCHOW A, et al.The Influence of Yb2+ Ions on Optical Properties and Power Stability of Ytterbium Doped Laser Fibers. Optical Components and Materials VII.2010, 7598: 75980B. |
[18] | WANG S, LOU F, YU C, et al.Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+and P5+ ions on Yb3+ ions in silica glass.Journal of Materials Chemistry C, 2014, 2(22): 4406. |
[19] | SHEN Y L, SHENG Q C, LIU S, et al.Effect of aluminum co-doping on the formation of Yb2+ in ytterbium-doped high silica glass.Chinese Optics Letters, 2013, 11(5): 1601. |
[20] | BOULON G.Why so deep research on Yb3+-doped optical inorganic materials?Journal of Alloys and Compounds, 2008, 451(1): 1-11. |
[21] | NAKAZ E.The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO4 hosts.Journal of Luminescence, 2002, 100(1): 89-96. |
[22] | BLASSE G.On the Eu3+fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides.The Journal of Chemical Physics, 1966, 45(7): 2356-2360. |
[23] | DUFFY J A.The electronic polarisability of oxygen in glass and the effect of composition.Journal of Non-Crystalline Solids, 2002, 297(2): 275-284. |
[24] | VAN PIETERSON L, HEEROMA M, De HEER E, et al.Charge transfer luminescence of Yb3+.Journal of Luminescence, 2000, 91(3): 177-193. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||