Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1327-1333.DOI: 10.15541/jim20150200
• Orginal Article • Previous Articles Next Articles
SHAO Chong-Yun1, 2, XU Wen-Bin2, 3, LIU Li-Wan1, 2, YANG Qiu-Hong1, HU Li-Li2, ZHOU Qin-Ling2, WANG Shi-Kai2
Received:
2015-04-24
Revised:
2015-06-16
Published:
2015-12-20
Online:
2015-11-24
About author:
SHAO Chong-Yun. E-mail: shaochongyun@foxmail.com
Supported by:
CLC Number:
SHAO Chong-Yun, XU Wen-Bin, LIU Li-Wan, YANG Qiu-Hong, HU Li-Li, ZHOU Qin-Ling, WANG Shi-Kai. Influence of Al3+/Yb3+/P5+-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses[J]. Journal of Inorganic Materials, 2015, 30(12): 1327-1333.
Sample | Yb2O3 | Al2O3 | P2O5 | K2O | BaO | SiO2 | Al/Yb | Yb2O3(wt-ppm) | |
---|---|---|---|---|---|---|---|---|---|
0#pure silica | — | — | — | — | — | 100 | — | — | |
Al# | 1#Al-1 | — | 1.0 | — | — | — | 99.00 | — | — |
2#Al-4.5 | — | 4.5 | — | — | — | 95.50 | — | — | |
3#AY-0.5-0.05 | 0.05 | 0.5 | — | — | — | 99.45 | 10 | 3259 | |
4#AY-2.5-0.05 | 0.05 | 2.5 | — | — | — | 97.45 | 50 | 3214 | |
Yb# | 5#Yb-0.05 | 0.05 | — | — | — | — | 99.95 | 0 | 3270 |
6#Yb-0.08 | 0.08 | — | — | — | — | 99.92 | 0 | 5324 | |
7#YA-0.05-1 | 0.05 | 1.0 | — | — | — | 98.95 | 20 | 3248 | |
8#YA-0.1-1 | 0.10 | 1.0 | — | — | — | 98.90 | 10 | 6478 | |
9#YA-0.15-1 | 0.15 | 1.0 | — | — | — | 98.85 | 20/3 | 9690 | |
10#MCVD | 0.02 | 0.2 | — | — | — | 99.78 | 10 | 1308 | |
P# | 11#PAY-6-4-0 | — | 4.0 | 6 | — | — | 90.00 | — | — |
12#PAY-1-4-0.1 | 0.10 | 4.0 | 1 | — | — | 94.90 | 40 | 6264 | |
13#PAY-6-4-0.1 | 0.10 | 4.0 | 6 | — | — | 89.90 | 40 | 5881 | |
14#P-65 | 1 | 5.0 | 65 | 5 | 24 | — | 5 | 27594 |
Table1 Compositions of Yb3+/Al3+/P5+-doped silica glasses and reference samples/mol%
Sample | Yb2O3 | Al2O3 | P2O5 | K2O | BaO | SiO2 | Al/Yb | Yb2O3(wt-ppm) | |
---|---|---|---|---|---|---|---|---|---|
0#pure silica | — | — | — | — | — | 100 | — | — | |
Al# | 1#Al-1 | — | 1.0 | — | — | — | 99.00 | — | — |
2#Al-4.5 | — | 4.5 | — | — | — | 95.50 | — | — | |
3#AY-0.5-0.05 | 0.05 | 0.5 | — | — | — | 99.45 | 10 | 3259 | |
4#AY-2.5-0.05 | 0.05 | 2.5 | — | — | — | 97.45 | 50 | 3214 | |
Yb# | 5#Yb-0.05 | 0.05 | — | — | — | — | 99.95 | 0 | 3270 |
6#Yb-0.08 | 0.08 | — | — | — | — | 99.92 | 0 | 5324 | |
7#YA-0.05-1 | 0.05 | 1.0 | — | — | — | 98.95 | 20 | 3248 | |
8#YA-0.1-1 | 0.10 | 1.0 | — | — | — | 98.90 | 10 | 6478 | |
9#YA-0.15-1 | 0.15 | 1.0 | — | — | — | 98.85 | 20/3 | 9690 | |
10#MCVD | 0.02 | 0.2 | — | — | — | 99.78 | 10 | 1308 | |
P# | 11#PAY-6-4-0 | — | 4.0 | 6 | — | — | 90.00 | — | — |
12#PAY-1-4-0.1 | 0.10 | 4.0 | 1 | — | — | 94.90 | 40 | 6264 | |
13#PAY-6-4-0.1 | 0.10 | 4.0 | 6 | — | — | 89.90 | 40 | 5881 | |
14#P-65 | 1 | 5.0 | 65 | 5 | 24 | — | 5 | 27594 |
Fig. 1 Influence of Al3+/Yb3+/P5+-doping on UV absorption spectra of silica glasses. (a) Al3+and Yb3+single doping; (b) Al3+/Yb3+-co-doping with Al3+ ion contents variation; (c) Al3+/Yb3+-co-doping with Yb3+ ion contents variation; (d) Al3+/Yb3+/P5+-co-doping with P5+ ion contents variation
Fig. 2 (a) UV absorption spectra and (b) visible emission spectra under UV excitation of different samples. Al3+/Yb3+-co-doped silica glasses with Al3+ and Yb3+ion contents variation are represented by thick solid line(4#、5#、6#) and dashed line(9#、8#、7#), respectively. Al3+/Yb3+/P5+-co-doped silica glasses with P5+ ion contents variation are represented by thin solid line(12#、13#). The inset in (b) shows an enlargement of the emission intensities of sample
Fig. 3 XPS spectra of Yb4d in different samples. (a) Pure Yb2O3 powder, (b) 8#, (c) 6#, (d) 13#, and (e) 14# samples, Pure Yb2O3 powder and Yb3+ doped phosphate glass(14#) are used as reference samples
Fig. 4 (a)UV absorption spectra and (b) fluorescence spectra under UV excitation of different samples. Sample 6# is Yb3+ single doping, sample 8# is Yb3+/Al3+-co-doping, sample 13# is Yb3+/Al3+/P5+-co-doping with excess P5+ contents. Coordination environment of Yb3+ of those three samples can appear Yb-O-Si, Yb-O-Al, and Yb-O-P, respectively. Sample 10# is a reference sample which is prepared in oxygen atmosphere by MCVD-system to ensure that the Yb ions are in their trivalent state
Sample | Yb-O-M(M=) | EN* | Yb4d BE* /eV | CT band /eV |
---|---|---|---|---|
8# | Al Si | 1.61 1.90 | 186.7 | 5.23 5.80 |
6# | Si | 1.90 | 187.1 | 5.80 |
13# | P | 2.19 | 187.6 | 6.50 |
Table 2 Comparison of structure and spectra for samples of 8#, 6# and 13#
Sample | Yb-O-M(M=) | EN* | Yb4d BE* /eV | CT band /eV |
---|---|---|---|---|
8# | Al Si | 1.61 1.90 | 186.7 | 5.23 5.80 |
6# | Si | 1.90 | 187.1 | 5.80 |
13# | P | 2.19 | 187.6 | 6.50 |
Fig. 5 Schematic configurational coordinate diagrams for the CT-transitions in (a) Yb3+/Al3+-co-doped, (b) Yb3+ singly doped and (c)Yb3+/P3+-co-doped silica glasses
[1] | LEICH M, JUST F, LANGNER A, et al.Highly efficient Yb-doped silica fibers prepared by powder sinter technology.Optics Letters, 2011, 36(9): 1557-1559. |
[2] | WANG S, LOU F, WANG M, et al.Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by Sol-Gel method.Fibers, 2013, 1(3): 93-100. |
[3] | JEONG Y, SAHU J, PAYNE D, et al.Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power.Opt Express, 2004, 12(25): 6088-6092. |
[4] | DESCHAMPS T, OLLIER N, VEZIN H, et al.Clusters dissolution of Yb3+ in co-doped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening.The Journal of Chemical Physics, 2012, 136(1): 14503. |
[5] | COSCELLI E, POLI F, ALKESKJOLD T T, et al. Single-mode design guidelines for 19-Cell double-cladding photonic crystal fibers.Journal of Lightwave Technology, 2012, 30(12): 1909-1914. |
[6] | WANG S, LI Z, YU C, et al.Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by Sol-Gel method.Optical Materials, 2013, 35(9): 1752-1755. |
[7] | UNGER S, SCHWUCHOW A, JETSCHKE S, et al. Optical Properties of Yb-doped Laser Fibers in Dependence on Codopants and Preparation Conditions. International Society for Optics and Photonics, San Jose, CA, 2008: 689016-1-11. |
[8] | ENGHOLM M, NORIN L.Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass.Opt. Express, 2008, 16(2): 1260-1268. |
[9] | KOPONEN J J, HOFFMAN H J, TAMMELA S K.Measuring photodarkening from single-mode ytterbium doped silica fibers.Optics Express, 2006, 14(24): 11539-11544. |
[10] | YOO S, BASU C, BOYLAND A J, et al.Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation.Optics Letters, 2007, 32(12): 1626-1628. |
[11] | ENGHOLM M, NORIN L, ABERG D.Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation.Optics Letters, 2007, 32(22): 3352-3354. |
[12] | MATTSSON K E.Photo darkening of rare earth doped silica. Opt. Express, 2011, 19(21): 19797-19812. |
[13] | RYBALTOVSKY A A, BOBKOV K K, VELMISKIN V V, et al.The Yb-doped Aluminosilicate Fibers Photodarkening Mechanism Based on the Charge-transfer State Excitation. Fiber Laser XI: Technology, Systems, and Applications, 2014, 8961: 896116. |
[14] | KIRCHHOF J, UNGER S, SCHWUCHOWA, et al. Materials for high-power fiber lasers.Journal of Non-Crystalline Solids, 2006, 352(23/24/25): 2399-2403. |
[15] | LOU FENG-GUANG, WANG SHI-KAI, WANG-MENG, et al.Sol-Gel derived Al3+, Yb3+ co-doped silica fiber core.Journal of Inorganic Materials, 2014, 29(4): 393-398. |
[16] | SIGEL G H.Vacuum ultraviolet absorption in alkali doped fused silica and silicate glasses.Journal of Physics and Chemistry of Solids, 1971, 32(10): 2373-2383. |
[17] | KIRCHHOF J, UNGER S, SCHWUCHOW A, et al.The Influence of Yb2+ Ions on Optical Properties and Power Stability of Ytterbium Doped Laser Fibers. Optical Components and Materials VII.2010, 7598: 75980B. |
[18] | WANG S, LOU F, YU C, et al.Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+and P5+ ions on Yb3+ ions in silica glass.Journal of Materials Chemistry C, 2014, 2(22): 4406. |
[19] | SHEN Y L, SHENG Q C, LIU S, et al.Effect of aluminum co-doping on the formation of Yb2+ in ytterbium-doped high silica glass.Chinese Optics Letters, 2013, 11(5): 1601. |
[20] | BOULON G.Why so deep research on Yb3+-doped optical inorganic materials?Journal of Alloys and Compounds, 2008, 451(1): 1-11. |
[21] | NAKAZ E.The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO4 hosts.Journal of Luminescence, 2002, 100(1): 89-96. |
[22] | BLASSE G.On the Eu3+fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides.The Journal of Chemical Physics, 1966, 45(7): 2356-2360. |
[23] | DUFFY J A.The electronic polarisability of oxygen in glass and the effect of composition.Journal of Non-Crystalline Solids, 2002, 297(2): 275-284. |
[24] | VAN PIETERSON L, HEEROMA M, De HEER E, et al.Charge transfer luminescence of Yb3+.Journal of Luminescence, 2000, 91(3): 177-193. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||