Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (8): 785-792.DOI: 10.15541/jim20140664
• Orginal Article • Next Articles
TAN Yi1, 2, SHI Shuang1, 2, JIANG Da-Chuan1, 2
Received:
2014-12-22
Revised:
2015-02-09
Published:
2015-08-20
Online:
2015-07-21
CLC Number:
TAN Yi, SHI Shuang, JIANG Da-Chuan. Progress in Research and Development of Solar-grade Silicon Preparation by Electron Beam Melting[J]. Journal of Inorganic Materials, 2015, 30(8): 785-792.
[1] | SWANSON R M.Photovoltaics power up.Science, 2009, 324(5929): 891-892. |
[2] | POWELL D M, WINKLER M T, CHOI H J, et al.Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs.Energy Environ. Sci., 2012, 5(3): 5874-5883. |
[3] | COLETTI G.Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities.Prog. Photovoltaics, 2013, 21(5): 1163-1170. |
[4] | TYAGI V V, RAHIM N A A, RAHIM N A, et al. Progress in solar PV technology: research and achievement.Renew. Sust. Energ. Rev., 2013, 20: 443-461. |
[5] | BUONASSISI T, ISTRATOV A A, MARCUS M A, et al.Engineering metal-impurity nanodefects for low-cost solar cells.Nat. Mater., 2005, 4(9): 676-679. |
[6] | HUDELSON S, NEWMAN B K, BERNARDIS S, et al.Retrograde melting and internal liquid gettering in silicon.Adv. Mater., 2010, 22(35): 3948-3953. |
[7] | PIZZINI S.Towards solar grade silicon: challenges and benefits for low cost photovoltaics.Sol. Energy Mater. Sol. Cells, 2010, 94(9): 1528-1533. |
[8] | CIFTJA A.Rrefining of solar cell silicon through metallurgical routes.JOM, 2012, 64(8): 933-934. |
[9] | CORTES A D S, SILVA D S, VIANA G A, et al. Solar cells from upgraded metallurgical-grade silicon purified by metallurgical routes.J. Renew. Sustain. Energy, 2013, 5(2): 123-129. |
[10] | YU W Z, MA W H, LV G Q, et al.Low-cost process for silicon purification with bubble adsorption in Al-Si melt.Metall. Mater. Trans. B, 2014, 45(4): 1573-1578. |
[11] | FANG M, LU C H, HUANG L Q, et al.Multiple slag operation on boron removal from metallurgical-grade silicon using Na2O-SiO2 slags.Ind. Eng. Chem. Res., 2014, 53(30): 12054-12062. |
[12] | CHOUDHURY A, HENGSBERGER E.Electron beam melting and refining of metals and alloys.ISIJ Int., 1992, 32(5): 673-681. |
[13] | BAKISH R.The substance of a technology: Electron-beam melting and refining.JOM, 1998, 50(11): 28-30. |
[14] | CASENAVE D, GAUTHIER R, PINARD P.A study of the purification process during the elaboration by electron bombardment of polysilicon ribbons designed for photovoltaic conversion.Sol. Energy Mater., 1981, 5(4): 417-423. |
[15] | IKEDA T, MAEDA M.Purification of metallurgical silicon for solar-grade silicon by electron beam button melting.ISIJ Int., 1992, 32(5): 635-642. |
[16] | KATO Y, HANAZAWA K, BABA H, et al.Purification of metallurgical grade silicon to solar grade for use in solar cell wafers.Tetsu To Hagane-J. Iron Steel Inst. Jpn., 2000, 86(11): 9-16. |
[17] | YUGE N, ABE M, HANAZAWA K, et al.Purification of metallurgical-grade silicon up to solar grade. Prog. Photovoltaics, 2001, 9(3): 203-209. |
[18] | MITRASINOVIC A M, D'SOUZA R, UTIGARD T A. Impurity removal and overall rate constant during low pressure treatment of liquid silicon.J. Mater. Process. Technol., 2012, 212(1): 78-82. |
[19] | SAFARIAN J, TANGSTAD M.Vacuum refining of molten silicon.Metall. Mater. Trans. B, 2012, 43(6): 1427-1445. |
[20] | 王强. 电子束熔炼提纯冶金级硅工艺研究. 大连: 大连理工大学硕士学位论文, 2010. |
[21] | WANG Q, DONG W, TAN Y, et al.Impurities evaporation from metallurgical-grade silicon in electron beam melting process.Rare Metals, 2011, 30(3): 274-277. |
[22] | SUN J L, ZHANG J, WANG H W, et al.Purification of metallurgical grade silicon in an electron beam melting furnace.Surf. Coat. Technol., 2013, 228: S67-S71. |
[23] | LIU T, DONG Z Y, ZHAO Y W, et al.Large scale purification of metallurgical silicon for solar cell by using electron beam melting.J. Cryst. Growth, 2012, 351(1): 19-22. |
[24] | MIYAKE M, HIRAMATSU T, MAEDA M.Removal of phosphorus and antimony in silicon by electron beam melting at low vacuum.J. Jpn. Inst. Met., 2006, 70(1): 43-46. |
[25] | OSOKIN V A, SHPAK P A, ISHCHENKO V V, et al.Electron- beam technology for refining polycrystalline silicon to be used in solar power applications.Metallurgist, 2008, 52(1/2): 121-127. |
[26] | PIRES J C S, BRAGA A F B, MEI P R. Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace.Sol. Energy Mater. Sol. Cells, 2003, 79(3): 347-355. |
[27] | PIRES J C S, OTUBO J, BRAGA A F B, et al. The purification of metallurgical grade silicon by electron beam melting.J. Mater. Process. Technol., 2005, 169(1): 16-20. |
[28] | PENG X, DONG W, TAN Y, et al.Removal of aluminum from metallurgical grade silicon using electron beam melting.Vacuum, 2011, 86(4): 471-475. |
[29] | SHI S, DONG W, PENG X, et al.Evaporation and removal mechanism of phosphorus from the surface of silicon melt during electron beam melting.Appl. Surf. Sci., 2013, 266: 344-349. |
[30] | TAN Y, GUO X L, SHI S, et al.Study on the removal process of phosphorus from silicon by electron beam melting.Vacuum, 2013, 93: 65-70. |
[31] | 彭旭. 电子束熔炼冶金硅中杂质蒸发行为研究. 大连: 大连理工大学硕士学位论文, 2011. |
[32] | 姜大川. 电子束熔炼提纯多晶硅的研究. 大连: 大连理工大学博士学位论文, 2012. |
[33] | ASGHAR H M N U K, TAN Y, SHI S, et al. Removal of oxygen from silicon by electron beam melting.Appl. Phys. A, 2014, 115(3): 753-757. |
[34] | SASAKI H, KOBASHI Y, NAGAI T, et al. Application of electron beam melting to the removal of phosphorus from silicon: toward production of solar-grade silicon by metallurgical processes. Adv. Mater. Sci. Eng., 2013, 2013: 857196-1-8. |
[35] | SAFARIAN J, TANGSTAD M.Kinetics and mechanism of phosphorus removal from silicon in vacuum induction refining.High Temp. Mater. Process., 2012, 31(1): 73-81. |
[36] | HANAZAWA K, YUGE N, KATO Y.Evaporation of phosphorus in molten silicon by an electron beam irradiation method.Mater. Trans., 2004, 45(3): 844-849. |
[37] | KEMMOTSU T, NAGAI T, MAEDA M.Removal rate of phosphorus from molten silicon.High Temp. Mater. Process., 2011, 30(1/2): 17-22. |
[38] | MAIJER D M, IKEDA T, COCKCROFT S L, et al.Mathematical modeling of residual stress formation in electron beam remelting and refining of scrap silicon for the production of solar-grade silicon.Mater. Sci. Eng. A, 2005, 390(1/2): 188-201. |
[39] | KRAZE A, MUIZNIEKS A, BERGFELDS K, et al.Reduction of silicon crust on the crucible walls in silicon melt purifying processes with electron beam technology by low-frequency travelling magnetic fields.Magnetohydrodynamics, 2011, 47(4): 369-383. |
[40] | CHOI S H, JANG B Y, LEE J S, et al.Effects of electron beam patterns on melting and refining of silicon for photovoltaic applications.Renew. Energy, 2013, 54: 40-45. |
[41] | WEN S T, TAN Y, SHI S, et al.Thermal contact resistance between the surfaces of silicon and copper crucible during electron beam melting.Int. J. Therm. Sci., 2013, 74: 37-43. |
[42] | TAN Y, WEN S T, SHI S, et al.Numerical simulation for parameter optimization of silicon purification by electron beam melting. Vacuum, 2013, 95: 18-24. |
[43] | JIANG D C, TAN Y, SHI S, et al.Removal of phosphorus in molten silicon by electron beam candle melting.Mater. Lett., 2012, 78: 4-7. |
[44] | JIANG D C, TAN Y, SHI S, et al.Evaporated metal aluminium and calcium removal from directionally solidified silicon for solar cell by electron beam candle melting.Vacuum, 2012, 86(10): 1417-1422. |
[45] | JIANG D C, TAN Y, SHI S, et al.Research on new method of electron beam candle melting used for removal of P from molten Si.Mater. Res. Innov., 2011, 15(6): 406-409. |
[46] | TAN Y, SHI S, GUO X L, et al.Effect of cooling rate on solidification of electron beam melted silicon ingots.Vacuum, 2013, 89: 12-16. |
[47] | TAN Y, REN S Q, SHI S, et al.Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification.Vacuum, 2014, 99: 272-276. |
[48] | JIANG D C, REN S Q, SHI S, et al.Phosphorus removal from silicon by vacuum refining and directional solidification.J. Electron. Mater., 2014, 43(2): 314-319. |
[49] | JIANG D C, SHI S, TAN Y, et al.Research on distribution of aluminum in electron beam melted silicon ingot.Vacuum, 2013, 96: 27-31. |
[50] | YUGE N, HANAZAWA K, KATO Y.Removal of metal impurities in molten silicon by directional solidification with electron beam heating.Mater. Trans., 2004, 45(3): 850-857. |
[51] | LEE J K, LEE J S, JANG B Y, et al. Directional solidification behaviors of polycrystalline silicon by electron-beam melting. Jpn. J. Appl. Phys., 2013, 52(10): 10MB09-1-5. |
[52] | LEE J K, LEE J S, JANG B Y, et al. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power. Jpn. J. Appl. Phys., 2014, 53(8): 08NJ05-1-6. |
[53] | MEI P R, MOREIRA S P, CARDOSO E, et al.Purification of metallurgical silicon by horizontal zone melting.Sol. Energy Mater. Sol. Cells, 2012, 98: 233-239. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||