Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (8): 785-792.DOI: 10.15541/jim20140664
• Orginal Article • Next Articles
TAN Yi1, 2, SHI Shuang1, 2, JIANG Da-Chuan1, 2
Received:
2014-12-22
Revised:
2015-02-09
Published:
2015-08-20
Online:
2015-07-21
CLC Number:
TAN Yi, SHI Shuang, JIANG Da-Chuan. Progress in Research and Development of Solar-grade Silicon Preparation by Electron Beam Melting[J]. Journal of Inorganic Materials, 2015, 30(8): 785-792.
[1] | SWANSON R M.Photovoltaics power up.Science, 2009, 324(5929): 891-892. |
[2] | POWELL D M, WINKLER M T, CHOI H J, et al.Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs.Energy Environ. Sci., 2012, 5(3): 5874-5883. |
[3] | COLETTI G.Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities.Prog. Photovoltaics, 2013, 21(5): 1163-1170. |
[4] | TYAGI V V, RAHIM N A A, RAHIM N A, et al. Progress in solar PV technology: research and achievement.Renew. Sust. Energ. Rev., 2013, 20: 443-461. |
[5] | BUONASSISI T, ISTRATOV A A, MARCUS M A, et al.Engineering metal-impurity nanodefects for low-cost solar cells.Nat. Mater., 2005, 4(9): 676-679. |
[6] | HUDELSON S, NEWMAN B K, BERNARDIS S, et al.Retrograde melting and internal liquid gettering in silicon.Adv. Mater., 2010, 22(35): 3948-3953. |
[7] | PIZZINI S.Towards solar grade silicon: challenges and benefits for low cost photovoltaics.Sol. Energy Mater. Sol. Cells, 2010, 94(9): 1528-1533. |
[8] | CIFTJA A.Rrefining of solar cell silicon through metallurgical routes.JOM, 2012, 64(8): 933-934. |
[9] | CORTES A D S, SILVA D S, VIANA G A, et al. Solar cells from upgraded metallurgical-grade silicon purified by metallurgical routes.J. Renew. Sustain. Energy, 2013, 5(2): 123-129. |
[10] | YU W Z, MA W H, LV G Q, et al.Low-cost process for silicon purification with bubble adsorption in Al-Si melt.Metall. Mater. Trans. B, 2014, 45(4): 1573-1578. |
[11] | FANG M, LU C H, HUANG L Q, et al.Multiple slag operation on boron removal from metallurgical-grade silicon using Na2O-SiO2 slags.Ind. Eng. Chem. Res., 2014, 53(30): 12054-12062. |
[12] | CHOUDHURY A, HENGSBERGER E.Electron beam melting and refining of metals and alloys.ISIJ Int., 1992, 32(5): 673-681. |
[13] | BAKISH R.The substance of a technology: Electron-beam melting and refining.JOM, 1998, 50(11): 28-30. |
[14] | CASENAVE D, GAUTHIER R, PINARD P.A study of the purification process during the elaboration by electron bombardment of polysilicon ribbons designed for photovoltaic conversion.Sol. Energy Mater., 1981, 5(4): 417-423. |
[15] | IKEDA T, MAEDA M.Purification of metallurgical silicon for solar-grade silicon by electron beam button melting.ISIJ Int., 1992, 32(5): 635-642. |
[16] | KATO Y, HANAZAWA K, BABA H, et al.Purification of metallurgical grade silicon to solar grade for use in solar cell wafers.Tetsu To Hagane-J. Iron Steel Inst. Jpn., 2000, 86(11): 9-16. |
[17] | YUGE N, ABE M, HANAZAWA K, et al.Purification of metallurgical-grade silicon up to solar grade. Prog. Photovoltaics, 2001, 9(3): 203-209. |
[18] | MITRASINOVIC A M, D'SOUZA R, UTIGARD T A. Impurity removal and overall rate constant during low pressure treatment of liquid silicon.J. Mater. Process. Technol., 2012, 212(1): 78-82. |
[19] | SAFARIAN J, TANGSTAD M.Vacuum refining of molten silicon.Metall. Mater. Trans. B, 2012, 43(6): 1427-1445. |
[20] | 王强. 电子束熔炼提纯冶金级硅工艺研究. 大连: 大连理工大学硕士学位论文, 2010. |
[21] | WANG Q, DONG W, TAN Y, et al.Impurities evaporation from metallurgical-grade silicon in electron beam melting process.Rare Metals, 2011, 30(3): 274-277. |
[22] | SUN J L, ZHANG J, WANG H W, et al.Purification of metallurgical grade silicon in an electron beam melting furnace.Surf. Coat. Technol., 2013, 228: S67-S71. |
[23] | LIU T, DONG Z Y, ZHAO Y W, et al.Large scale purification of metallurgical silicon for solar cell by using electron beam melting.J. Cryst. Growth, 2012, 351(1): 19-22. |
[24] | MIYAKE M, HIRAMATSU T, MAEDA M.Removal of phosphorus and antimony in silicon by electron beam melting at low vacuum.J. Jpn. Inst. Met., 2006, 70(1): 43-46. |
[25] | OSOKIN V A, SHPAK P A, ISHCHENKO V V, et al.Electron- beam technology for refining polycrystalline silicon to be used in solar power applications.Metallurgist, 2008, 52(1/2): 121-127. |
[26] | PIRES J C S, BRAGA A F B, MEI P R. Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace.Sol. Energy Mater. Sol. Cells, 2003, 79(3): 347-355. |
[27] | PIRES J C S, OTUBO J, BRAGA A F B, et al. The purification of metallurgical grade silicon by electron beam melting.J. Mater. Process. Technol., 2005, 169(1): 16-20. |
[28] | PENG X, DONG W, TAN Y, et al.Removal of aluminum from metallurgical grade silicon using electron beam melting.Vacuum, 2011, 86(4): 471-475. |
[29] | SHI S, DONG W, PENG X, et al.Evaporation and removal mechanism of phosphorus from the surface of silicon melt during electron beam melting.Appl. Surf. Sci., 2013, 266: 344-349. |
[30] | TAN Y, GUO X L, SHI S, et al.Study on the removal process of phosphorus from silicon by electron beam melting.Vacuum, 2013, 93: 65-70. |
[31] | 彭旭. 电子束熔炼冶金硅中杂质蒸发行为研究. 大连: 大连理工大学硕士学位论文, 2011. |
[32] | 姜大川. 电子束熔炼提纯多晶硅的研究. 大连: 大连理工大学博士学位论文, 2012. |
[33] | ASGHAR H M N U K, TAN Y, SHI S, et al. Removal of oxygen from silicon by electron beam melting.Appl. Phys. A, 2014, 115(3): 753-757. |
[34] | SASAKI H, KOBASHI Y, NAGAI T, et al. Application of electron beam melting to the removal of phosphorus from silicon: toward production of solar-grade silicon by metallurgical processes. Adv. Mater. Sci. Eng., 2013, 2013: 857196-1-8. |
[35] | SAFARIAN J, TANGSTAD M.Kinetics and mechanism of phosphorus removal from silicon in vacuum induction refining.High Temp. Mater. Process., 2012, 31(1): 73-81. |
[36] | HANAZAWA K, YUGE N, KATO Y.Evaporation of phosphorus in molten silicon by an electron beam irradiation method.Mater. Trans., 2004, 45(3): 844-849. |
[37] | KEMMOTSU T, NAGAI T, MAEDA M.Removal rate of phosphorus from molten silicon.High Temp. Mater. Process., 2011, 30(1/2): 17-22. |
[38] | MAIJER D M, IKEDA T, COCKCROFT S L, et al.Mathematical modeling of residual stress formation in electron beam remelting and refining of scrap silicon for the production of solar-grade silicon.Mater. Sci. Eng. A, 2005, 390(1/2): 188-201. |
[39] | KRAZE A, MUIZNIEKS A, BERGFELDS K, et al.Reduction of silicon crust on the crucible walls in silicon melt purifying processes with electron beam technology by low-frequency travelling magnetic fields.Magnetohydrodynamics, 2011, 47(4): 369-383. |
[40] | CHOI S H, JANG B Y, LEE J S, et al.Effects of electron beam patterns on melting and refining of silicon for photovoltaic applications.Renew. Energy, 2013, 54: 40-45. |
[41] | WEN S T, TAN Y, SHI S, et al.Thermal contact resistance between the surfaces of silicon and copper crucible during electron beam melting.Int. J. Therm. Sci., 2013, 74: 37-43. |
[42] | TAN Y, WEN S T, SHI S, et al.Numerical simulation for parameter optimization of silicon purification by electron beam melting. Vacuum, 2013, 95: 18-24. |
[43] | JIANG D C, TAN Y, SHI S, et al.Removal of phosphorus in molten silicon by electron beam candle melting.Mater. Lett., 2012, 78: 4-7. |
[44] | JIANG D C, TAN Y, SHI S, et al.Evaporated metal aluminium and calcium removal from directionally solidified silicon for solar cell by electron beam candle melting.Vacuum, 2012, 86(10): 1417-1422. |
[45] | JIANG D C, TAN Y, SHI S, et al.Research on new method of electron beam candle melting used for removal of P from molten Si.Mater. Res. Innov., 2011, 15(6): 406-409. |
[46] | TAN Y, SHI S, GUO X L, et al.Effect of cooling rate on solidification of electron beam melted silicon ingots.Vacuum, 2013, 89: 12-16. |
[47] | TAN Y, REN S Q, SHI S, et al.Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification.Vacuum, 2014, 99: 272-276. |
[48] | JIANG D C, REN S Q, SHI S, et al.Phosphorus removal from silicon by vacuum refining and directional solidification.J. Electron. Mater., 2014, 43(2): 314-319. |
[49] | JIANG D C, SHI S, TAN Y, et al.Research on distribution of aluminum in electron beam melted silicon ingot.Vacuum, 2013, 96: 27-31. |
[50] | YUGE N, HANAZAWA K, KATO Y.Removal of metal impurities in molten silicon by directional solidification with electron beam heating.Mater. Trans., 2004, 45(3): 850-857. |
[51] | LEE J K, LEE J S, JANG B Y, et al. Directional solidification behaviors of polycrystalline silicon by electron-beam melting. Jpn. J. Appl. Phys., 2013, 52(10): 10MB09-1-5. |
[52] | LEE J K, LEE J S, JANG B Y, et al. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power. Jpn. J. Appl. Phys., 2014, 53(8): 08NJ05-1-6. |
[53] | MEI P R, MOREIRA S P, CARDOSO E, et al.Purification of metallurgical silicon by horizontal zone melting.Sol. Energy Mater. Sol. Cells, 2012, 98: 233-239. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||