Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (8): 880-884.DOI: 10.15541/ji.m.2013.0629
• Orginal Article • Previous Articles Next Articles
LI Juan1,2,3, WU Hao4, CHEN Yong-Jun2, XU Sheng-Ming1
Received:
2013-12-03
Revised:
2014-02-24
Published:
2014-08-20
Online:
2014-07-15
CLC Number:
LI Juan, WU Hao, CHEN Yong-Jun, XU Sheng-Ming. Oxygen Gas-assisted Synthesis of Boron Nitride Nanotubes[J]. Journal of Inorganic Materials, 2014, 29(8): 880-884.
Fig. 2 Low- (a) and high- (b) magnification SEM images of the product synthesized at 1300℃ and oxygen flow of 10 mL/ min. Inset is the high-magnification image of a particle attached at the end of the 1 D nanostructure
Fig. 3 TEM image (inset TEM image showing a particle attached at the end of a BN nanotube) (a) and HRTEM image (b) of BN nanotube wall, and their EDX patterns (c,d), respectively
Fig. 5 Low- and high-magnification SEM images of BN nanotubes synthesized at 1300℃ and different flow rates of oxygen (a) and (b): 15 mL/min; (c) and (d) : 20 mL/min; (e) and (f): 40 mL/min
[1] | CHOPRA N G, LUYKEN R J, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269(5226): 966-967. |
[2] | SURYAVANSHI A P, YU M F, WEN J G, et al. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett., 2004, 84(14): 2527-2529. |
[3] | OKU T, NARITA I. Calculation of H2 gas storage for boron nitride and carbon nanotubes studied from the cluster calculation. Physica B, 2002, 323(2): 216-218. |
[4] | GOLBERG D, BANDO Y, TANG C C, et al. Boron nitride nanotubes. Adv. Mater., 2007, 19(18): 2413-2432. |
[5] | LOISEAU A, WILLAIME F, DEMONCY N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett., 1996, 76(25): 4737-4740. |
[6] | GOLBERG D, BANDO Y, EREMETS M. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69(14): 2045-2047. |
[7] | YU J, CHEN Y, WUHRER R. In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 2005, 17(21): 5172-5176. |
[8] | HAN W Q, MICKELSON W, CUMINGS J, et al. Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl. Phys. Lett., 2002, 81(6): 1110-l112. |
[9] | XU L Q, PENG X Y, MENG Z Y, et al.A co-pyrolysis method to boron nitride nanotubes at relative low temperature. Chem. Mater.,2003, 15(13): 2675-2680. |
[10] | LIURI O R, JONES C R, BARTLETT B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater., 2000, 12(7): l808-1810. |
[11] | SOLOZHENKO V L, LAZARENKO A G, PETITET J P, et al. Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids, 2001, 62(7): 1331-1334. |
[12] | WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., 1991, 95(2): 525-532. |
[13] | HAN W Q, YU H G, ZHI C Y, et al. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett., 2008, 8(2): 491-494. |
[14] | CHEN Z G, ZOU J, LIU G, et al. Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes. Appl. Phys. Lett. , 2009, 94(2): 023105-1-3. |
[15] | ZHU Y C, BANDO Y, XUE D F, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B, 2004, 108(20): 6193-6196. |
[16] | MO L B, CHEN Y J, LUO L J. Solid-state reaction synthesis of boron carbonitride nanotubes. Appl. Phys.A, 2010, 100(1): 129-134. |
[17] | LI J, LIN H, CHEN Y J.et al. The effect of iron oxide on the formation of boron nitride nanotubes. Chem. Eng. J., 2011, 174(3): 687-692. |
[18] | WILSON P R, CHEN Z. Characterization of surface grain boundary precipitates formed during annealing of low carbon steel sheets. Scr. Mater., 2005, 53(1): l19-l23. |
[19] | CHEN Y J, BO C, DENISE C M, et al. An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology, 2006, 17(12): 2942-2946. |
[20] | KIM N S, LEE Y T, PARK J, et al. Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J. Phys. Chem. B, 2002, 106(36): 9286-9290. |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||