Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (8): 880-884.DOI: 10.15541/ji.m.2013.0629
• Orginal Article • Previous Articles Next Articles
LI Juan1,2,3, WU Hao4, CHEN Yong-Jun2, XU Sheng-Ming1
Received:
2013-12-03
Revised:
2014-02-24
Published:
2014-08-20
Online:
2014-07-15
CLC Number:
LI Juan, WU Hao, CHEN Yong-Jun, XU Sheng-Ming. Oxygen Gas-assisted Synthesis of Boron Nitride Nanotubes[J]. Journal of Inorganic Materials, 2014, 29(8): 880-884.
Fig. 2 Low- (a) and high- (b) magnification SEM images of the product synthesized at 1300℃ and oxygen flow of 10 mL/ min. Inset is the high-magnification image of a particle attached at the end of the 1 D nanostructure
Fig. 3 TEM image (inset TEM image showing a particle attached at the end of a BN nanotube) (a) and HRTEM image (b) of BN nanotube wall, and their EDX patterns (c,d), respectively
Fig. 5 Low- and high-magnification SEM images of BN nanotubes synthesized at 1300℃ and different flow rates of oxygen (a) and (b): 15 mL/min; (c) and (d) : 20 mL/min; (e) and (f): 40 mL/min
[1] | CHOPRA N G, LUYKEN R J, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269(5226): 966-967. |
[2] | SURYAVANSHI A P, YU M F, WEN J G, et al. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett., 2004, 84(14): 2527-2529. |
[3] | OKU T, NARITA I. Calculation of H2 gas storage for boron nitride and carbon nanotubes studied from the cluster calculation. Physica B, 2002, 323(2): 216-218. |
[4] | GOLBERG D, BANDO Y, TANG C C, et al. Boron nitride nanotubes. Adv. Mater., 2007, 19(18): 2413-2432. |
[5] | LOISEAU A, WILLAIME F, DEMONCY N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett., 1996, 76(25): 4737-4740. |
[6] | GOLBERG D, BANDO Y, EREMETS M. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69(14): 2045-2047. |
[7] | YU J, CHEN Y, WUHRER R. In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 2005, 17(21): 5172-5176. |
[8] | HAN W Q, MICKELSON W, CUMINGS J, et al. Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl. Phys. Lett., 2002, 81(6): 1110-l112. |
[9] | XU L Q, PENG X Y, MENG Z Y, et al.A co-pyrolysis method to boron nitride nanotubes at relative low temperature. Chem. Mater.,2003, 15(13): 2675-2680. |
[10] | LIURI O R, JONES C R, BARTLETT B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater., 2000, 12(7): l808-1810. |
[11] | SOLOZHENKO V L, LAZARENKO A G, PETITET J P, et al. Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids, 2001, 62(7): 1331-1334. |
[12] | WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., 1991, 95(2): 525-532. |
[13] | HAN W Q, YU H G, ZHI C Y, et al. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett., 2008, 8(2): 491-494. |
[14] | CHEN Z G, ZOU J, LIU G, et al. Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes. Appl. Phys. Lett. , 2009, 94(2): 023105-1-3. |
[15] | ZHU Y C, BANDO Y, XUE D F, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B, 2004, 108(20): 6193-6196. |
[16] | MO L B, CHEN Y J, LUO L J. Solid-state reaction synthesis of boron carbonitride nanotubes. Appl. Phys.A, 2010, 100(1): 129-134. |
[17] | LI J, LIN H, CHEN Y J.et al. The effect of iron oxide on the formation of boron nitride nanotubes. Chem. Eng. J., 2011, 174(3): 687-692. |
[18] | WILSON P R, CHEN Z. Characterization of surface grain boundary precipitates formed during annealing of low carbon steel sheets. Scr. Mater., 2005, 53(1): l19-l23. |
[19] | CHEN Y J, BO C, DENISE C M, et al. An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology, 2006, 17(12): 2942-2946. |
[20] | KIM N S, LEE Y T, PARK J, et al. Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J. Phys. Chem. B, 2002, 106(36): 9286-9290. |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||