Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (3): 330-336.DOI: 10.15541/jim20230462
Special Issue: 【材料计算】材料模拟计算(202506)
Previous Articles Next Articles
TAM YU Puy Mang1,2(), XU Yu3, GAO Quanhao1,2, ZHOU Haiqiong1,2, ZHANG Zhen4, YIN Hao1,5, LI Zhen1,2,5(
), LÜ Qitao5, CHEN Zhenqiang1,2,5, MA Fengkai1,2(
), SU Liangbi4
Received:
2023-10-09
Revised:
2023-11-20
Published:
2024-03-20
Online:
2023-11-28
Contact:
LI Zhen, professor. E-mail: ailz268@126.com;About author:
TAM YU Puy Mang (1997-), female, Master candidate. E-mail: pmtamyu@outlook.com
Supported by:
CLC Number:
TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals[J]. Journal of Inorganic Materials, 2024, 39(3): 330-336.
Fig. 3 Selective excited and height normalized emission spectra of 4S3/2→4I15/2 transition in Er3+-doped fluoride (a) CaF2; (b) SrF2; (c) PbF2; Colorful figures are available on website
Symbol | Formation energy/eV | ||
---|---|---|---|
CaF2 | SrF2 | PbF2 | |
11|0|0|11 | -0.637 | - | - |
11|0|0|12 | -0.624 | -0.725 | -0.371 |
11|0|1|21 | -1.272 | - | - |
11|0|4|21 | - | - | -1.109 |
21|0|2|21 | -2.305 | -1.700 | -1.145* |
21|0|3|31 | -3.214 | -2.308 | - |
21|0|6|31 | - | - | -1.825 |
31|0|1|31 | -3.909 | -2.722* | -1.662* |
31|0|5|41 | -4.729 | - | - |
31|0|8|41 | -4.555 | -4.200 | -3.350 |
31|0|8|41-C | -4.628 | -4.220 | - |
41|1|0|41 | -4.328* | -2.865* | -1.511* |
41|0|8|41-O | -5.749 | -5.651 | -3.754 |
41|0|8|41-A1 | -5.781 | -5.655 | -3.807 |
41|0|8|51-O | -6.407 | - | - |
41|0|8|51-A | -6.564 | - | -4.280 |
51|0|8|51 | -7.860 | -7.233 | -4.760 |
61|0|8|51 | -8.568 | -8.134 | -5.360 |
61|0|8|61 | -9.042 | - | - |
Table S1 Formation energy of Er3+ clusters in CaF2, SrF2 and PbF2
Symbol | Formation energy/eV | ||
---|---|---|---|
CaF2 | SrF2 | PbF2 | |
11|0|0|11 | -0.637 | - | - |
11|0|0|12 | -0.624 | -0.725 | -0.371 |
11|0|1|21 | -1.272 | - | - |
11|0|4|21 | - | - | -1.109 |
21|0|2|21 | -2.305 | -1.700 | -1.145* |
21|0|3|31 | -3.214 | -2.308 | - |
21|0|6|31 | - | - | -1.825 |
31|0|1|31 | -3.909 | -2.722* | -1.662* |
31|0|5|41 | -4.729 | - | - |
31|0|8|41 | -4.555 | -4.200 | -3.350 |
31|0|8|41-C | -4.628 | -4.220 | - |
41|1|0|41 | -4.328* | -2.865* | -1.511* |
41|0|8|41-O | -5.749 | -5.651 | -3.754 |
41|0|8|41-A1 | -5.781 | -5.655 | -3.807 |
41|0|8|51-O | -6.407 | - | - |
41|0|8|51-A | -6.564 | - | -4.280 |
51|0|8|51 | -7.860 | -7.233 | -4.760 |
61|0|8|51 | -8.568 | -8.134 | -5.360 |
61|0|8|61 | -9.042 | - | - |
Symbol | Formation energy/eV | ||
---|---|---|---|
La3+ | Tb3+ | Y3+ | |
11|0|0|11 | -0.107 | - | - |
11|0|0|12 | -0.204 | -0.346 | -0.355 |
11|0|1|21 | -0.653 | -0.791 | - |
11|0|2|21 | - | - | -0.785 |
21|0|1|21 | -0.914 | - | - |
21|0|2|21 | - | -1.040 | -1.123 |
21|0|5|31 | - | -1.530 | -1.523 |
21|0|1|31 | -1.580 | - | - |
31|0|1|31 | -1.911 | -1.622* | -1.590* |
31|0|2|41 | -2.215 | - | - |
31|0|8|41 | -1.511* | -3.172 | -3.203 |
41|1|0|41 | -2.319 | -1.690* | -1.488* |
41|0|8|41-O | - | -3.452 | -3.542 |
41|0|8|41-A1 | - | -3.504 | -3.575 |
41|0|8|41-A2 | -2.132* | -3.383 | -3.417 |
41|0|8|51-A | -2.605 | -3.984 | -4.108 |
51|0|8|51 | -3.196 | -4.585 | -4.627 |
61|0|8|51 | -3.811 | -5.153 | -5.169 |
61|0|8|61 | -4.075 | - | - |
Table S2 Formation energy of the clusters in La3+:PbF2, Tb3+:PbF2 and Y3+:PbF2
Symbol | Formation energy/eV | ||
---|---|---|---|
La3+ | Tb3+ | Y3+ | |
11|0|0|11 | -0.107 | - | - |
11|0|0|12 | -0.204 | -0.346 | -0.355 |
11|0|1|21 | -0.653 | -0.791 | - |
11|0|2|21 | - | - | -0.785 |
21|0|1|21 | -0.914 | - | - |
21|0|2|21 | - | -1.040 | -1.123 |
21|0|5|31 | - | -1.530 | -1.523 |
21|0|1|31 | -1.580 | - | - |
31|0|1|31 | -1.911 | -1.622* | -1.590* |
31|0|2|41 | -2.215 | - | - |
31|0|8|41 | -1.511* | -3.172 | -3.203 |
41|1|0|41 | -2.319 | -1.690* | -1.488* |
41|0|8|41-O | - | -3.452 | -3.542 |
41|0|8|41-A1 | - | -3.504 | -3.575 |
41|0|8|41-A2 | -2.132* | -3.383 | -3.417 |
41|0|8|51-A | -2.605 | -3.984 | -4.108 |
51|0|8|51 | -3.196 | -4.585 | -4.627 |
61|0|8|51 | -3.811 | -5.153 | -5.169 |
61|0|8|61 | -4.075 | - | - |
Fig. S1 Salculated thermodynamic stable centers of Er3+ in fluoride (C) CaF2; (S) SrF2; (P) PbF2 Centers are divided into three groups, the monomers, cubic sublattice clusters and square antiprism structure clusters which are denoted as “1”, “2” and “3”, respectively
[1] | XUE Y Y, XU X D, SU L B, et al. Research progress of mid-infrared laser crystals. Journal of Synthetic Crystals, 2020, 49(8): 1347. |
[2] |
YANG J, ZHAO J B, LIU Y Y, et al. Near-infrared spectra and laser parameters of Yb3+ and Na+ codoped CaF2-SrF2 crystal. Chinese Journal of Luminescence, 2022, 43(3): 341.
DOI URL |
[3] |
YU T, ZHENG C Z, ZHAO S S, et al. Progress on application of Monte Carlo simulation in studying energy transfer mechanisms for rare-earth luminescent materials. Chinese Journal of Luminescence, 2022, 43(9): 1390.
DOI URL |
[4] |
DINERMAN B J, MOULTON P F. 3-µm CW laser operations in erbium-doped YSGG, GGG, and YAG. Optics Letters, 1994, 19: 1143.
DOI URL |
[5] |
KINTZ G J, ALLEN R, ESTEROWITZ L. CW and pulsed 2.8 μm laser emission from diode-pumped Er3+:LiYF4 at room temperature. Applied Physics Letters, 1987, 50: 1553.
DOI URL |
[6] | MA F K, ZHANG Z, JIANG D P, et al. Cluster structure of rare earth doped fluorite halide crystals. Journal of Synthetic Crystals, 2023, 52(7): 1219. |
[7] |
ZHANG M, WANG G J, LIANG Y Y, et al. Continuous-wave laser properties of Er:Lu2O3 crystal grown by EFG method. Chinese Journal of Luminescence, 2023, 44(2): 240.
DOI URL |
[8] | WU X, ZHANG Z, ZHANG Z H, et al. Laser-heated pedestal growth method and characterization of Er:YAP single crystal fibers. Journal of Synthetic Crystals, 2023, 52(7): 1308. |
[9] |
DONG K P, SUN D L, ZHANG H L, et al. Spectroscopy and LD end-pumped high power 2.79 μm CW laser from an Er:LuYSGG mixed crystal. Journal of Luminescence, 2021, 236(4): 118107.
DOI URL |
[10] | YANG R, CHEN H R, TU L P, et al. Back energy transfer enhances Er3+upconversion luminescence. Chinese Journal of Luminescence, 2023, 44(9): 1552. |
[11] |
MA F K, SU F, ZHOU R F, et al. The defect aggregation of RE3+(RE = Y, La-Lu) in MF2 (M = Ca, Sr, Ba) fluorites. Materials Research Bulletin, 2020, 125(5): 110788.
DOI URL |
[12] |
QIAN X Y, WANG W D, SONG Q S, et al. Luminescence property and Judd-Ofelt analysis of 0.6%Pr, x%La:CaF2 crystals. Journal of Inorganic Materials, 2023, 38(3): 357.
DOI URL |
[13] |
ZHANG Z, MA F K, GUO X S, et al. Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals. Optical Materials Express, 2018, 8(12): 3820.
DOI URL |
[14] |
WANG H J, KOU H M, WANG Y Z, et al. Irradiation damage of CaF2 with different yttrium concentrations under 193 nm laser. Journal of Inorganic Materials, 2023, 38(2): 219.
DOI URL |
[15] |
ZHAO X, LIU Z, LIN H, et al. Temperature sensing characteristics of Y7O6F9:Er, Yb/PAN composite fibers based on up-conversion luminescence. Chinese Journal of Luminescence, 2023, 44(2): 279.
DOI URL |
[16] |
LIU J J, FENG X Y, FAN X W, et al. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2-SrF2 lasers in the mid-infrared region. Optics Letters, 2018, 43(10): 2418.
DOI URL |
[17] |
ZONG M Y, ZHANG Z, LIU J J, et al. LD pumped high-power mid-infrared solid state lasers based on 1.3at%Er3+:CaF2 crystal. Infrared and Laser Engineering, 2021, 50: 20210336.
DOI URL |
[18] |
ZHANG Z, WU Q H, WANG Y X, et al. Efficient 2.76 μm continuous-wave laser in extremely lightly Er-doped CaF2 single- crystal fiber. Laser Physics Letters, 2020, 17(8): 085801.
DOI URL |
[19] |
ŠVEJKAR R, ŠULC J, JELÍNKOVÁ H, et al. Diode-pumped Er:SrF2 laser tunable at 2.7 μm. Optical Materials Express, 2018, 8: 1025.
DOI URL |
[20] |
WU G D, YIN X Q, FAN M D, et al. Nd-doped structurally disordered YSr3(PO4)3 single crystal: growth and laser performances. Journal of Rare Earths, 2021, 39(12): 1540.
DOI URL |
[21] |
KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6: 15.
DOI URL |
[22] |
PERDEW J, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77: 3865.
DOI PMID |
[23] |
BLÖCHL P. Projector augmented-wave method. Physical Review B, 1994, 50: 17953.
DOI PMID |
[24] |
MA F K, ZHOU H Q, TANG Q Y, et al. Clusters modification for tunable photoluminescence in Nd3+:SrF2 crystal. Journal of Alloys and Compounds, 2022, 899: 162913.
DOI URL |
[25] |
KOLOBKOVA E, NIKONOROV N, BABKINA A, et al. Concentration dependence of upconversion luminescence of Er3+/Yb3+in the fluorophosphate glasses with small phosphates content. Optical Materials, 2020, 109(8): 110279.
DOI URL |
[26] |
TORQUATO A, OLIVEIRAS R A, SALES T O, et al. Influence of PbF2 content on optical thermometry of Er3+/Yb3+co-doped tungsten sodium phosphate glasses. Optical Materials, 2021, 112(12): 110723.
DOI URL |
[27] |
CORISH J, CATLOW C R A, JACOBS P W M, et al. Defect aggregation in anion-excess fluorites. Dopant monomers and dimers. Physical Review B, 1982, 25: 6425.
DOI URL |
[28] |
BENDALL P J, CATLOW C R A, CORISH J, et al. Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms. Journal of Solid State Chemistry, 1984, 51: 159.
DOI URL |
[29] |
KAMINSKII A, ZHMUROVA Z, LOMONOV V, et al. Two stimulated emission 4F3/2→4I11/2, 13/2 channels of Nd3+ ions in crystals of the CaF2-ScF3 system. Physica Status Solidi A, 1984, 84: K81.
DOI URL |
[30] | TALLANT D R, WRIGHT J C. Selective laser excitation of charge compensated sites in CaF2:Er3+. Journal of Chemical Physics, 1975, 63: 2074. |
[31] |
MA F K, ZHANG Z, JIANG D P, et al. Neodymium cluster evolution in fluorite laser crystal: a combined DFT and synchrotron X-ray absorption fine structure study. Crystal Growth & Design, 2022, 22: 4480.
DOI URL |
[32] |
MA F K, ZHANG P X, SU L B, et al. The host driven local structures modulation towards broadband photoluminescence in neodymium-doped fluorite crystal. Optical Materials, 2021, 119(9): 111322.
DOI URL |
[33] |
CAI J J, MA C G, YIN M. Factors influencing the structure of the complex-defects in AF2: RE3+ (A=Ca, Sr and Ba): a first-principles study. Journal of Luminescence, 2022, 250(6): 119058.
DOI URL |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[3] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[4] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[5] | PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation [J]. Journal of Inorganic Materials, 2025, 40(5): 521-528. |
[6] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[7] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[8] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[9] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[10] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[11] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[12] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[13] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[14] | LI Guanglan, WANG Tianyu, LIU Yichen, LU Zhongfa. Layered NiFeCo-LDH-Ti6C3.75 Catalyst: Preparation and Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2023, 38(7): 823-829. |
[15] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||