Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (3): 270-279.DOI: 10.15541/jim20220356
Special Issue: 【能源环境】热电材料(202409); 【信息功能】大尺寸功能晶体(202409)
• REVIEW • Previous Articles Next Articles
LIN Siqi1,2,3(), LI Airan4, FU Chenguang4, LI Rongbing1, JIN Min1,3(
)
Received:
2022-06-24
Revised:
2022-08-09
Published:
2023-03-20
Online:
2022-10-28
Contact:
JIN Min, professor. E-mail: jmaish@aliyun.comAbout author:
LIN Siqi (1992-), female, PhD, associate professor. E-mail: linsiqi0811@163.com
Supported by:
CLC Number:
LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review[J]. Journal of Inorganic Materials, 2023, 38(3): 270-279.
Fig. 3 MgSb2 crystals grown by slow cooling method (a) XRD patterns of Mg3-xMnxSb2 crystal powder grown by slow cooling method; (b) XRD patterns of (001) cleavage plane; (c) Morphology of as grown Mg3-xMnxSb2 crystal; (d) SEM image of cleavage plane[48]; (e) Ag-doped Mg3Sb2 crystal grown by modified slow cooling method[50]
Fig. 4 MgSb2 crystals grown by directional solidification method[51] (a) Ag-doped Mg3Sb2 crystal growth diagram; (b) The as-grown crystal1. The graphite; 2. Raw materials; 3. Melting zone; 4. Graphite heater; 5. Induction coil; 6. Boron nitride baffle; 7. Solidified crystal; 8. Seed crystal
Fig. 5 Mg3Sb2-xBix crystals grown by flux method (a) Sb flux grown Mg3Sb2[53]; (b) Te-doped Mg3Sb2 crystals[54]; (c) Mg flux grown Mg3Bi1.25Sb0.75 crystal[55]
Fig. 6 MgSb2 crystal grown by flux method[56] (a) Schematic diagram of Y-doped Mg3Sb2 crystal growth by flux Bridgman method; (b) As grown crystal; (c) Mg3Sb2 single crystal with the size of 8 mm×10 mm×25 mm
Fig. 7 Thermoelectric properties of Mg3Sb2-xBix crystals (a) Thermoelectric properties of Mg3Sb2 crystals grown by modified temperature cooling method[50]; (b) Sb/Bi flux Bridgman method[56]; (c) Directional solidification method[51]; (d) Sb flux method[54]; (e) Mg flux method[55]
Method | Composition | Type | Shape and size | ZTmax | Year | Ref. |
---|---|---|---|---|---|---|
Temperature cooling | Mn-doped Mg3Sb2 | n | Flake, 6-7 mm | 0.11 (//ab plane, 500 K) | 2014 | [ |
Mg3Sb2-xBix | p | Flake, 6-7 mm | 0.006 (//ab plane, 300 K) | 2015 | [ | |
Ag-doped Mg3Sb2 | p | Bulk, 3 mm×6 mm×10 mm | 0.03 (//ab plane, 300 K) 0.12 (┴ab plane, 300 K) | 2021 | [ | |
Flux method | Mg3Sb2 (Sb Flux) | p | Flake, 6-7 mm | - | 2018 | [ |
Mg3Bi2 (Bi Flux) | p | Flake, 6-7 mm | - | 2018 | [ | |
Y-doped Mg3Sb2 (Mg Flux) | n | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi2 (Mg Flux) | n/p | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi1.25Sb0.75 (Mg Flux) | n | Flake, 3-10 mm | 0.82 (//ab plane, 325 K) | 2020 | [ | |
Te-doped Mg3Sb2 (Sb Flux) | n | Flake, 5-10 mm | 0.78 (//ab plane, 600 K) | 2020 | [ | |
Directional solidification | Ag-doped Mg3Sb2 | p | Ingot, ϕ 10 mm×50 mm | 0.62 (//ab plane, 800 K) 0.68 (┴ab plane, 800 K) | 2020 | [ |
Flux Bridgman | Y-doped Mg3Sb2 (Sb/Bi Flux) | n | Bulk, 8 mm×10 mm×25 mm | 0.60 (//ab plane, 700 K) 0.48 (┴ab plane, 700 K) | 2021 | [ |
Table 1 Growth results of Mg3X2 crystal by different methods and their thermoelectric properties
Method | Composition | Type | Shape and size | ZTmax | Year | Ref. |
---|---|---|---|---|---|---|
Temperature cooling | Mn-doped Mg3Sb2 | n | Flake, 6-7 mm | 0.11 (//ab plane, 500 K) | 2014 | [ |
Mg3Sb2-xBix | p | Flake, 6-7 mm | 0.006 (//ab plane, 300 K) | 2015 | [ | |
Ag-doped Mg3Sb2 | p | Bulk, 3 mm×6 mm×10 mm | 0.03 (//ab plane, 300 K) 0.12 (┴ab plane, 300 K) | 2021 | [ | |
Flux method | Mg3Sb2 (Sb Flux) | p | Flake, 6-7 mm | - | 2018 | [ |
Mg3Bi2 (Bi Flux) | p | Flake, 6-7 mm | - | 2018 | [ | |
Y-doped Mg3Sb2 (Mg Flux) | n | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi2 (Mg Flux) | n/p | Flake, 3-8 mm | - | 2020 | [ | |
Y-doped Mg3Bi1.25Sb0.75 (Mg Flux) | n | Flake, 3-10 mm | 0.82 (//ab plane, 325 K) | 2020 | [ | |
Te-doped Mg3Sb2 (Sb Flux) | n | Flake, 5-10 mm | 0.78 (//ab plane, 600 K) | 2020 | [ | |
Directional solidification | Ag-doped Mg3Sb2 | p | Ingot, ϕ 10 mm×50 mm | 0.62 (//ab plane, 800 K) 0.68 (┴ab plane, 800 K) | 2020 | [ |
Flux Bridgman | Y-doped Mg3Sb2 (Sb/Bi Flux) | n | Bulk, 8 mm×10 mm×25 mm | 0.60 (//ab plane, 700 K) 0.48 (┴ab plane, 700 K) | 2021 | [ |
[1] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457.
DOI PMID |
[2] |
SHI X, CHEN L, UHER C. Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61(6): 379.
DOI URL |
[3] |
GAYNER C, KAR K K. Recent advances in thermoelectric materials. Progress in Materials Science, 2016, 83: 330.
DOI URL |
[4] |
HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward. Science, 2017, 357(6358): eaak9997.
DOI URL |
[5] | IOFFE A F, STILBANS L S, IORDANISHVILI E K, et al. Semiconductor thermoelements and thermoelectric cooling. Physics Today, 1959, 12(5): 42. |
[6] | MAO J, LIU Z, ZHOU J, et al. Advances in thermoelectrics. Advances in Physics, 2018, 67(2): 69. |
[7] |
WEI T R, QIN Y, DENG T, et al. Copper chalcogenide thermoelectric materials. Science China Materials, 2019, 62(1): 8.
DOI |
[8] |
ZHAO K, QIU P, SHI X, et al. Recent advances in liquid-like thermoelectric materials. Advanced Functional Materials, 2020, 30(8): 1903867.
DOI URL |
[9] |
SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 2020, 120(15): 7399.
DOI URL |
[10] |
ZHANG X, BU Z, SHI X, et al. Electronic quality factor for thermoelectrics. Science Advances, 2020, 6(46): eabc0726.
DOI URL |
[11] |
ZHU T, LIU Y, FU C, et al. Compromise and synergy in high- efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884.
DOI URL |
[12] |
BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414.
DOI |
[13] |
PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66.
DOI |
[14] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373.
DOI |
[15] |
LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11(5): 422.
DOI PMID |
[16] |
HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554.
DOI PMID |
[17] |
HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818.
DOI URL |
[18] |
GUPTA R P, MCCARTY R, SHARP J. Practical contact resistance measurement method for bulk Bi2Te3-based thermoelectric devices. Journal of Electronic Materials, 2014, 43(6): 1608.
DOI URL |
[19] |
PEI J, CAI B, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 2020, 7(12): 1856.
DOI URL |
[20] |
MAO J, CHEN G, REN Z. Thermoelectric cooling materials. Nature Materials, 2021, 20(4): 454.
DOI PMID |
[21] |
PINCHERLE L, RADCLIFFE J M. Semiconducting intermetallic compounds. Advances in Physics, 1956, 5(19): 271.
DOI URL |
[22] | SLACK G A. New materials and performance limits for thermoelectric cooling. CRC Handbook of Thermoelectrics, 2018: 407. |
[23] |
TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Advanced Materials, 2016, 28(46): 10182.
DOI URL |
[24] |
MAO J, SHUAI J, SONG S, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proceedings of the National Academy of Sciences, 2017, 114(40): 10548.
DOI URL |
[25] |
ZHANG J, SONG L, PEDERSEN S H, et al. Discovery of high- performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nature Communications, 2017, 8(1): 13901.
DOI |
[26] | KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy & Environmental Science, 2018, 11(2): 429. |
[27] | IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4for low-grade waste heat recovery. Energy & Environmental Science, 2019, 12(3): 965. |
[28] |
MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2- based materials. Science, 2019, 365(6452): 495.
DOI URL |
[29] |
SHU R, ZHOU Y, WANG Q, et al. Mg3+δSbxBi2-x family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature. Advanced Functional Materials, 2019, 29(4): 1807235.
DOI URL |
[30] |
WOOD M, KUO J J, IMASATO K, et al. Improvement of low- temperature ZT in a Mg3Sb2-Mg3Bi2 solid solution via Mg-vapor annealing. Advanced Materials, 2019, 31(35): 1902337.
DOI URL |
[31] |
ZHANG F, CHEN C, YAO H, et al. High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature. Advanced Functional Materials, 2020, 30(5): 1906143.
DOI URL |
[32] |
YING P, HE R, MAO J, et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nature Communications, 2021, 12(1): 1121.
DOI PMID |
[33] |
MARTINEZ-RIPOLL M, HAASE A, BRAUER G. The crystal structure of α-Mg3Sb2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1974, 30(8): 2006.
DOI URL |
[34] | LI A, FU C, ZHAO X, et al. High-performance Mg3Sb2-xBix thermoelectrics: progress and perspective. Research, 2020, 2020: 1934848. |
[35] |
ZHENG C, HOFFMANN R, NESPER R, et al. Site preferences and bond length differences in CaAl2Si2-type Zintl compounds. Journal of the American Chemical Society, 1986, 108(8): 1876.
DOI URL |
[36] |
OHNO S, IMASATO K, ANAND S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2(1): 141.
DOI URL |
[37] |
BHARDWAJ A, RAJPUT A, SHUKLA A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 2013, 3(22): 8504.
DOI URL |
[38] |
MAO J, WU Y, SONG S, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Letters, 2017, 2(10): 2245.
DOI URL |
[39] |
SHUAI J, WANG Y, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2. Acta Materialia, 2015, 93: 187.
DOI URL |
[40] |
ZHANG J, SONG L, SIST M, et al. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nature Communications, 2018, 9(1): 4716.
DOI |
[41] |
SUN X, LI X, YANG J, et al. Achieving band convergence by tuning the bonding ionicity in n-type Mg3Sb2. Journal of Computational Chemistry, 2019, 40(18): 1693.
DOI URL |
[42] |
SHI X, ZHAO T, ZHANG X, et al. Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping. Advanced Materials, 2019, 31(36): 1903387.
DOI URL |
[43] |
ZHANG F, CHEN C, YAO H, et al. High-performance N-type Mg3Sb2 towards thermoelectric application near room temperature. Advanced Functional Materials, 2020, 30(5): 1906143.
DOI URL |
[44] |
SHI X, ZHANG X, GANOSE A, et al. Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-xBix thermoelectrics. Materials Today Physics, 2021, 18: 100362.
DOI URL |
[45] |
ZHANG J, SONG L, IVERSEN B B. Rapid one-step synthesis and compaction of high-performance n-type Mg3Sb2 thermoelectrics. Angewandte Chemie International Edition, 2020, 59(11): 4278.
DOI URL |
[46] |
NAYEB-HASHEMI A A, CLARK J B. The Mg-Sb (magnesium- antimony) system. Bulletin of Alloy Phase Diagrams, 1984, 5(6): 579.
DOI URL |
[47] |
GRUBE G. Metallographische mitteilungen aus dem institut für anorganische chemie der universität göttingen. XXV. Über die legierungen des magnesiums mit kadmium, zink, wismut und antimon. Zeitschrift für Anorganische Chemie, 1906, 49(1): 72.
DOI URL |
[48] |
KIM S, KIM C, HONG Y K, et al. Thermoelectric properties of Mn-doped Mg-Sb single crystals. Journal of Materials Chemistry A, 2014, 2(31): 12311.
DOI URL |
[49] |
KIM S H, KIM C M, HONG Y K, et al. Thermoelectric properties of Mg3Sb2-xBix single crystals grown by Bridgman method. Materials Research Express, 2015, 2(5): 055903.
DOI URL |
[50] |
LI A, HU C, HE B, et al. Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nature Communications, 2021, 12(1): 5408.
DOI PMID |
[51] |
LI X, XIE H, YANG B, et al. Influence of growth rate and orientation on thermoelectric properties in Mg3Sb2 crystal. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9773.
DOI |
[52] |
JIN M, YANG W H, WANG X H, et al. Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method. Rare Metals, 2021, 40(4): 858.
DOI |
[53] |
XIN J, LI G, AUFFERMANN G, et al. Growth and transport properties of Mg3X2 (X=Sb, Bi) single crystals. Materials Today Physics, 2018, 7: 61.
DOI URL |
[54] |
IMASATO K, FU C, PAN Y, et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Advanced Materials, 2020, 32(16): 1908218.
DOI URL |
[55] | PAN Y, YAO M, HONG X, et al. Mg3(Bi, Sb)2 single crystals towards high thermoelectric performance. Energy & Environmental Science, 2020, 13(6): 1717. |
[56] |
JIN M, LIN S, LI W, et al. Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2. Materials Today Physics, 2021, 21: 100508.
DOI URL |
[57] |
JIN M, SHAO H, HU H, et al. Growth and characterization of large size undoped p-type SnSe single crystal by Horizontal Bridgman method. Journal of Alloys and Compounds, 2017, 712: 857.
DOI URL |
[58] |
KAIBE H, TANAKA Y, SAKATA M, et al. Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi2Te3 single crystal with the composition of a useful thermoelectric cooling material. Journal of Physics and Chemistry of Solids, 1989, 50(9): 945.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | CAI Hao, WANG Qihang, ZOU Zhaoyong. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275-1282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||