Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (2): 155-162.DOI: 10.15541/jim20220326
Special Issue: 【信息功能】介电、铁电、压电材料(202409); 【信息功能】柔性材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
Received:
2022-06-11
Revised:
2022-08-08
Published:
2023-02-20
Online:
2022-09-15
Contact:
HU Hailong, associate professor. E-mail: hailonghu@csu.edu.cnAbout author:
CHEN Lei (1999-), male, Master candidate. E-mail: sccl@mail.ustc.edu.cn
Supported by:
CLC Number:
CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites[J]. Journal of Inorganic Materials, 2023, 38(2): 155-162.
Fig. 3 Calculation method of DBM model (a) Electric field distribution determined by finite element analysis; (b) Electric field distribution determined by MATLAB; (c) Two-dimensional array model consisting of 200×200 grid points Colorful figures are available on website
Fig. 4 Electrical displacement evolution of dielectric composite material with varied ratio n between fillers and matrix dielectric constant (a)When the dielectric composite filler is selected to be BaTiO3; (b) When the dielectric composite matrix is selected to be PDMS
Fig. 7 Analysis of electric field distribution (a) Dielectric composites composed of filler particles and matrix; (b) Internal electric field distribution in dielectric composites Colorful figures are available on website
Fig. 8 Electric field and displacement field distribution with different dielectric constant (a) Electric field distribution along AA' transversal; (b) Electric displacement field distribution along AA' transversal; (c) Electric field distribution along AA' transversal with dielectric constant of filler particles reduced by m times; (d) Electric displacement field distribution along AA' transversal with dielectric constant of filler particles reduced by m times Colorful figures are available on website
Fig. 10 Quantitative analysis of breakdown damage morphology between dielectric composite with different contents of filler particles and pure polymer matrix (a) Fractal dimension; (b) Damage path length
[1] |
LI D, ZENG X, LI Z, et al. Progress and perspectives in dielectric energy storage ceramics. Journal of Advanced Ceramics, 2021, 10(4): 675.
DOI URL |
[2] |
CHU B, XIN Z, REN K, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science, 2006, 313(5785): 334.
PMID |
[3] |
HU H, ZHANG F, LUO S, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy, 2020, 74: 104844.
DOI URL |
[4] |
HU H, ZHANG F, LUO S, et al. Electrocaloric effect in relaxor ferroelectric polymer nanocomposites for solid-state cooling. Journal of Materials Chemistry A, 2020, 8(33): 16814.
DOI URL |
[5] |
WANG L, GAO F, XU J, et al. Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement. Composites Science and Technology, 2018, 158: 112.
DOI URL |
[6] |
WANG SIJING, QU PENG, LI CHENG, et al. Hydrothermal synthesis of dendritic BaTiO3 ceramic powders and its application in BaTiO3/P(VDF-TrFE) composites. International Journal of Applied Ceramic Technology, 2017, 14(5): 969.
DOI URL |
[7] |
WANG Y, WANG L, YUAN Q, et al. Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization. Nano Energy, 2018, 44: 364.
DOI URL |
[8] |
HOLLAND I. Fundamentals of the finite element method. Computers & Structures, 1974, 4(1): 3.
DOI URL |
[9] |
BERGERO P, PERUANI F, SOLOVEY G, et al. Dielectric breakdown model for conductor-loaded and insulator-loaded composite materials. Physical Review E, 2004, 69(1): 016123.
DOI URL |
[10] |
NIEMEYER L, PIETRONERO L, WIESMANN H J. Fractal dimension of dielectric breakdown. Physical Review Letters, 1984, 52(12): 1033.
DOI URL |
[11] |
ADILA ISMAIL F, ROZANA A M O, SOBRI IDRIS M, et al. Dielectric and microstructural properties of BaTiO3 and Ba0.9925Er0.0075TiO3 ceramics. EPJ Web of Conferences, 2017, 162: 01051.
DOI URL |
[12] |
MENG X, ZHANG Z, LIN D, et al. Effects of particle size of dielectric fillers on the output performance of piezoelectric and triboelectric nanogenerators. Journal of Advanced Ceramics, 2021, 10(5): 991.
DOI URL |
[13] | FENG X J, LIU X L, ZHAO K, et al. Effects of dopamine- modified BaTiO3 on breakdown strength of BaTiO3/PVDF composites. Acta Materiae Compositae Sinica, 2015, 32(3): 699. |
[14] |
CHEN S S, HU J, GAO L, et al. Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles. RSC Advances, 2016, 6(40): 33231.
DOI URL |
[15] | 迟晓红.纳米蒙脱土/聚烯烃复合材料结构形态与电树生长机理研究. 哈尔滨: 哈尔滨理工大学博士学位论文, 2015. |
[16] | 薛福明.基于WZ模型的电树枝生长仿真分析. 哈尔滨: 哈尔滨理工大学硕士学位论文, 2012. |
[17] |
IMAI T, SAWA F, OZAKI T, et al. Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2): 445.
DOI URL |
[18] | ZHOU K, BOGGS S A, RAMPRASAD R, et al. Dielectric response and tunability of a dielectric-paraelectric composite. Applied Physics Letters, 2008, 93(10): 325. |
[19] |
ZHU L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. Journal of Physical Chemistry Letters, 2014, 5(21): 3677.
DOI PMID |
[20] |
HUANG X, JIANG P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Advanced Materials, 2015, 27(3): 546.
DOI URL |
[1] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[2] | CHEN Haiyan, TANG Zhipeng, YIN Liangjun, ZHANG Linbo, XU Xin. Low-frequency Microwave Absorption of CIPs@Mn0.8Zn0.2Fe2O4-CNTs Composites [J]. Journal of Inorganic Materials, 2024, 39(1): 71-80. |
[3] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[4] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[5] | OUYANG Qin, WANG Yanfei, XU Jian, LI Yinsheng, PEI Xueliang, MO Gaoming, LI Mian, LI Peng, ZHOU Xiaobing, GE Fangfang, ZHANG Chonghong, HE Liu, YANG Lei, HUANG Zhengren, CHAI Zhifang, ZHAN Wenlong, HUANG Qing. Research Progress of SiC Fiber Reinforced SiC Composites for Nuclear Application [J]. Journal of Inorganic Materials, 2022, 37(8): 821-840. |
[6] | YE Fen, JIANG Xiangping, CHEN Yunjing, HUANG Xiaokun, ZENG Renfen, CHEN Chao, NIE Xin, CHENG Hao. Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 499-506. |
[7] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[8] | CHU Yuxing, LIU Hairui, YAN Shuang. Preparation and Gas Sensing Properties of SnO2/NiO Composite Semiconductor Nanofibers [J]. Journal of Inorganic Materials, 2021, 36(9): 950-958. |
[9] | ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 379-385. |
[10] | BAI Jiawei, YANG Jing, LÜ Zhenfei, TANG Xiaodong. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43-48. |
[11] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[12] | WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2020, 35(4): 431-438. |
[13] | ZHAO Zhankui, LI Tao, LU Shuhan, WANG Minggang, ZHANG Jingjing, CHENG Daowen, WU Chen, CHI Yue, WANG Hongli. Magnetic Properties and Resistivity of Soft Magnetic Composites Regulated by SPS Enhanced Interface Reaction Mechanism [J]. Journal of Inorganic Materials, 2020, 35(11): 1223-1226. |
[14] | Hui GAN, Chuan-Bin WANG, Qiang SHEN, Lian-Meng ZHANG. Preparation of La2NiMnO6 Double-perovskite Ceramics by Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2019, 34(5): 541-545. |
[15] | Zhi-Jun MA, Chang-Ye MANG, Hai-Tao ZHAO, Zhi-Hao GUAN, Liang CHENG. Comparison of Electromagnetism Behavior of Different Content Cobalt-zinc Ferrite Loaded with Graphene [J]. Journal of Inorganic Materials, 2019, 34(4): 407-416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||