Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 1030-1036.DOI: 10.15541/jim20210769
• RESEARCH ARTICLE • Previous Articles
					
													ZHU Hezhen1(
), WANG Xuanpeng2,3(
), HAN Kang1, YANG Chen1, WAN Ruizhe2, WU Liming1, MAI Liqiang1,3(
)
												  
						
						
						
					
				
Received:2021-12-17
															
							
																	Revised:2022-02-26
															
							
															
							
																	Published:2022-09-20
															
							
																	Online:2022-03-10
															
						Contact:
								WANG Xuanpeng, lecturer. E-mail: wxp122525691@whut.edu.cn;About author:ZHU Hezhen (1995-), male, Master candidate. E-mail: 290761@whut.edu.cn				
													Supported by:CLC Number:
ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials[J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036.
																													Fig. 4 CV curves for (a) NCA and (b) NCA@1CP; (c) Initial charge-discharge curves under 2.7-4.3 V at 0.2C and (d) cycling properties under 2.7-4.3 V at 1C for NCA and NCA@nCP; Cycling properties for NCA and NCA@1CP (e) under 2.7-4.5 V at 1C and (f) under 2.7-4.3 V at 2C Colourful figures are available on website
																													Fig. 5 Voltage-time variation curves during in-situ XRD for (a) NCA and (c) NCA@1CP; In-situ XRD patterns for (b, e) NCA and (d, f) NCA@1CP; (g) Variation curves of the lattice parameter c during charging for NCA and NCA@1CP
																													Fig. 6 (a) Cycling properties of full cells both NCA and NCA@1CP as cathode, graphite as anode under 2.7-4.25 V at 1C, and (b) charge-discharge curves of the second cycle for NCA@1CP in full cell
| Sample | NCA | NCA@0.5CP | NCA@1CP | NCA@3CP | 
|---|---|---|---|---|
| I(003)/I(104) | 1.426 | 2.120 | 2.261 | 1.981 | 
Table S1 I(003)/I(104) values for NCA, NCA@0.5CP, NCA@1CP and NCA@3CP
| Sample | NCA | NCA@0.5CP | NCA@1CP | NCA@3CP | 
|---|---|---|---|---|
| I(003)/I(104) | 1.426 | 2.120 | 2.261 | 1.981 | 
| Sample | a/nm | c/nm | V/nm3 | c/a | Rwp | Rp | 
|---|---|---|---|---|---|---|
| NCA | 0.287398 | 1.421071 | 0.101652 | 4.944609 | 7.13 | 4.18 | 
| NCA@0.5CP | 0.287296 | 1.420733 | 0.101556 | 4.945188 | 6.63 | 4.73 | 
| NCA@1CP | 0.287286 | 1.420440 | 0.101527 | 4.944341 | 5.86 | 4.39 | 
| NCA@3CP | 0.287305 | 1.420646 | 0.101556 | 4.944731 | 6.74 | 4.82 | 
Table S2 Lattice parameters of the NCA, NCA@0.5CP, NCA@1CP and NCA@3CP calculated from XRD Rietveld refinement
| Sample | a/nm | c/nm | V/nm3 | c/a | Rwp | Rp | 
|---|---|---|---|---|---|---|
| NCA | 0.287398 | 1.421071 | 0.101652 | 4.944609 | 7.13 | 4.18 | 
| NCA@0.5CP | 0.287296 | 1.420733 | 0.101556 | 4.945188 | 6.63 | 4.73 | 
| NCA@1CP | 0.287286 | 1.420440 | 0.101527 | 4.944341 | 5.86 | 4.39 | 
| NCA@3CP | 0.287305 | 1.420646 | 0.101556 | 4.944731 | 6.74 | 4.82 | 
| [1] |  
											 SCROSATI B, GARCHE J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010,  195(9):  2419-2430. 
																							 DOI URL  | 
										
| [2] |  
											 MANTHIRAM A. An outlook on lithium ion battery technology. ACS Central Science, 2017,  3(10):  1063-1069. 
																							 DOI URL  | 
										
| [3] |  
											 YU T, KE B Y, LI H Y, et al. Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Materials Chemistry Frontiers, 2021,  5(13):  4892-4911. 
																							 DOI URL  | 
										
| [4] |  
											 YE Z C, QIU L, YANG W, et al. Recent progress of nickel-rich layered cathode materials for lithium-ion batteries. Chemistry-A European Journal, 2021,  27(13):  4249-4269. 
																							 DOI URL  | 
										
| [5] |  
											 KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization. Advanced Energy Materials, 2018,  8(6):  1702028. 
																							 DOI URL  | 
										
| [6] |  
											 SUN Y K. High-capacity layered cathodes for next-generation electric vehicles. ACS Energy Letters, 2019,  4(5):  1042-1044. 
																							 DOI URL  | 
										
| [7] |  
											 GANNETT C N, MELECIO-ZAMBRANO L, THEIBAULT M J, et al. Organic electrode materials for fast-rate, high-power battery applications. Materials Reports: Energy, 2021,  1(1):  100008. 
																							 DOI URL  | 
										
| [8] |  
											 PAN J X, YE Y J, ZHOU M Z, et al. Improving the activity and stability of Ni-based electrodes for solid oxide cells through surface engineering: recent progress and future perspectives. Materials Reports: Energy, 2021,  1(2):  100025. 
																							 DOI URL  | 
										
| [9] |  
											 SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 2009,  8(4):  320-324. 
																							 DOI URL  | 
										
| [10] |  
											 WANG X X, DING Y L, DENG Y P, et al. Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Advanced Energy Materials, 2020,  10(12):  1903864. 
																							 DOI URL  | 
										
| [11] | MANTHIRAM A, SONG B H, LI W D. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2017, 6: 125-139. | 
| [12] |  
											 KIM U H, KUO L Y, KAGHAZCHI P, et al. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries. ACS Energy Letters, 2019,  4(2):  576-582. 
																							 DOI URL  | 
										
| [13] |  
											 RYU H H, PARK K J, YOON D R, et al. Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability. Advanced Energy Materials, 2019,  9(44):  1902698. 
																							 DOI URL  | 
										
| [14] | LIU L H, LI M C, CHU L H, et al. Layered ternary metal oxides: performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Progress in Materials Science, 2020, 111: 100655. | 
| [15] |  
											 HOU P Y, YIN J M, DING M, et al. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives. Small, 2017,  13(45):  1701802. 
																							 DOI URL  | 
										
| [16] | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 2013, 233: 121-130. | 
| [17] | GUAN P Y, ZHOU L, YU Z L, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry, 2020, 43: 220-235. | 
| [18] |  
											 TAN X R, ZHANG M L, LI J, et al. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: a short review. Ceramics International, 2020,  46(14):  21888-21901. 
																							 DOI URL  | 
										
| [19] |  
											 HERZOG M J, GAUQUELIN N, ESKEN D, et al. Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries. Energy Technology, 2021,  9(4):  2100028. 
																							 DOI URL  | 
										
| [20] | ZHAO S Y, ZHU Y T, QIAN Y C, et al. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Materials Letters, 2020, 265: 127418. | 
| [21] |  
											 ZHOU P F, ZHANG Z, MENG H J, et al. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale, 2016,  8(46):  19263-19269. 
																							 DOI URL  | 
										
| [22] | HO V C, JEONG S, YIM T, et al. Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries. Journal of Power Sources, 2020, 450: 227625. | 
| [23] | HUANG W, ZHUANG W D, LI N, et al. Nanoscale Y-doped ZrO2 modified LiNi0.88Co0.09Al0.03O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. Solid State Ionics, 2019, 343: 115087. | 
| [24] |  
											 XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries. Joule, 2019,  3(5):  1252-1275. 
																							 DOI URL  | 
										
| [25] |  
											 MIN K, PARK K, PARK S Y, et al. Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates. Scientific Reports, 2017,  7(1):  7151. 
																							 DOI URL  | 
										
| [26] |  
											 JAMIL S, WANG G, YANG L, et al. Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification. Journal of Materials Chemistry A, 2020,  8(40):  21306-21316. 
																							 DOI URL  | 
										
| [27] |  
											 HU G R, DENG X R, PENG Z D, et al. Comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery. Electrochimica Acta, 2008,  53(5):  2567-2573. 
																							 DOI URL  | 
										
| [28] |  
											 YAN P F, ZHENG J M, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature Energy, 2018,  3(7):  600-605. 
																							 DOI URL  | 
										
| [29] | FENG Z, RAJAGOPALAN R, SUN D, et al. In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chemical Engineering Journal, 2020, 382: 122959. | 
| [30] |  
											 JO C H, JO J H, YASHIRO H, et al. Bioinspired surface layer for the cathode material of high-energy-density sodium-ion batteries. Advanced Energy Materials, 2018,  8(13):  1702942. 
																							 DOI URL  | 
										
| [31] |  
											 WEIGEL T, SCHIPPER F, ERICKSON E M, et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2cathode materials doped by various cations. ACS Energy Letters, 2019,  4(2):  508-516. 
																							 DOI URL  | 
										
| [32] |  
											 HU S K, CHENG G H, CHENG M Y, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Journal of Power Sources, 2009,  188(2):  564-569. 
																							 DOI URL  | 
										
| [33] |  
											 ZHOU P F, MENG H J, ZHANG Z, et al. Stable layered Ni-rich LiNi0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017,  5(6):  2724-2731. 
																							 DOI URL  | 
										
| [34] |  
											 YANG X Q, SUN X, MCBREEN J. New findings on the phase transitions in Li1-xNiO2: in situ synchrotron X-ray diffraction studies. Electrochemistry Communications, 1999,  1(6):  227-232. 
																							 DOI URL  | 
										
| [35] | DUAN J G, HU G R, CAO Y B, et al. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping. Journal of Power Sources, 2016, 326: 322-330. | 
| [36] | LIANG H M, WANG Z X, GUO H J, et al. Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating. Applied Surface Science, 2017, 423: 1045-1053. | 
| [37] | LI H Y, GUO S H, ZHOU H S. In-situ/operando characterization techniques in lithium-ion batteries and beyond. Journal of Energy Chemistry, 2021, 59: 191-211. | 
| [38] |  
											 CROGUENNEC L, POUILLERIE C, MANSOUR A N, et al. Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with ≤0.30). Journal of Materials Chemistry, 2001,  11(1):  131-141. 
																							 DOI URL  | 
										
| [39] |  
											 CROGUENNEC L, POUILLERIE C, DELMAS C. NiO2obtained by electrochemical lithium deintercalation from lithium nickelate: structural modifications. Journal of The Electrochemical Society, 2000,  147(4):  1314. 
																							 DOI URL  | 
										
| [1] | TAN Bowen, GENG Shuanglong, ZHANG Kai, ZHENG Bailin. Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation [J]. Journal of Inorganic Materials, 2025, 40(7): 772-780. | 
| [2] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. | 
| [3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. | 
| [4] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. | 
| [5] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. | 
| [6] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. | 
| [7] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. | 
| [8] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. | 
| [9] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. | 
| [10] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. | 
| [11] | WANG Yanan, LI Hua, WANG Zhengkun, LI Qingfeng, LIAN Chen, HE Xin. Progress on Failure Mechanism of Lithium Ion Battery Caused by Diffusion Induced Stress [J]. Journal of Inorganic Materials, 2020, 35(10): 1071-1087. | 
| [12] | Jian-Huang KE, Kai XIE, Yu HAN, Wei-Wei SUN, Shi-Qiang LUO, Jin-Feng LIU. Morphology Controlling of the High-voltage Cathode Materials with Different Co-solvents [J]. Journal of Inorganic Materials, 2019, 34(6): 618-624. | 
| [13] | GUO Rong-Nan, HAN Wei-Qiang. Effects of Structure and Properties of Polar Polymeric Binders on Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2019, 34(10): 1021-1029. | 
| [14] | LI Bo, HAO Wen, WEN Xiao-Gang. Semi-hollow/Solid ZnMn2O4 Microspheres: Synthesis and Performance in Li Ion Battery [J]. Journal of Inorganic Materials, 2018, 33(3): 307-312. | 
| [15] | BAI Xue-Jun, LIU Chan, HOU Min, WANG Biao, CAO Hui, FU Jun-Jie. Silicon/CNTs/Graphene Free-standing Anode Material for Lithium-ion Battery [J]. Journal of Inorganic Materials, 2017, 32(7): 705-712. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||