Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (9): 1023-1029.DOI: 10.15541/jim20210757
Special Issue: 【能源环境】锂离子电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Yang1,2(), FAN Guangxin1,3(
), LIU Pei2, YIN Jinpei1, LIU Baozhong2, ZHU Linjian3, LUO Chengguo3
Received:
2021-12-10
Revised:
2022-02-13
Published:
2022-09-20
Online:
2022-02-21
Contact:
FAN Guangxin, associate professor. E-mail: fangx@hpu.edu.cnAbout author:
WANG Yang (1997-), male, Master candidate. E-mail: wangyang1857@126.com
Supported by:
CLC Number:
WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery[J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029.
Sample | d(111)/nm | FWHM(111)/(°) | I(111)/(311) | a/nm | V/nm3 | d(Li-O)/nm | Mn/Li8a | Rwp | S |
---|---|---|---|---|---|---|---|---|---|
LKMO-0 | 0.474 | 0.151 | 1.529 | 0.822 | 0.556 | 0.187 | 2.53% | 10.23 | 1.13 |
LKMO-1 | 0.476 | 0.166 | 1.585 | 0.824 | 0.561 | 0.189 | 2.29% | 10.97 | 1.13 |
LKMO-2 | 0.476 | 0.177 | 1.876 | 0.825 | 0.563 | 0.193 | 2.27% | 10.53 | 1.07 |
LKMO-3 | 0.477 | 0.179 | 1.678 | 0.826 | 0.564 | 0.191 | 2.23% | 10.91 | 1.15 |
Table 1 Detailed crystal structural parameters for LKMO-n
Sample | d(111)/nm | FWHM(111)/(°) | I(111)/(311) | a/nm | V/nm3 | d(Li-O)/nm | Mn/Li8a | Rwp | S |
---|---|---|---|---|---|---|---|---|---|
LKMO-0 | 0.474 | 0.151 | 1.529 | 0.822 | 0.556 | 0.187 | 2.53% | 10.23 | 1.13 |
LKMO-1 | 0.476 | 0.166 | 1.585 | 0.824 | 0.561 | 0.189 | 2.29% | 10.97 | 1.13 |
LKMO-2 | 0.476 | 0.177 | 1.876 | 0.825 | 0.563 | 0.193 | 2.27% | 10.53 | 1.07 |
LKMO-3 | 0.477 | 0.179 | 1.678 | 0.826 | 0.564 | 0.191 | 2.23% | 10.91 | 1.15 |
Sample | Before charging | After charging/ discharging | DLi+ /(cm2·s-1) | ||
---|---|---|---|---|---|
Rs/Ω | Rct/Ω | Rs/Ω | Rct/Ω | ||
LKMO-0 | 4.22 | 193.91 | 6.43 | 176.00 | 1.20×10-11 |
LKMO-1 | 3.59 | 72.62 | 7.92 | 63.25 | 2.35×10-11 |
Table 2 Fitting results of EIS and diffusion coefficients of Li-ions of LKMO-0 and LKMO-1
Sample | Before charging | After charging/ discharging | DLi+ /(cm2·s-1) | ||
---|---|---|---|---|---|
Rs/Ω | Rct/Ω | Rs/Ω | Rct/Ω | ||
LKMO-0 | 4.22 | 193.91 | 6.43 | 176.00 | 1.20×10-11 |
LKMO-1 | 3.59 | 72.62 | 7.92 | 63.25 | 2.35×10-11 |
Sample | Condition | a/nm | d(111)/nm | 2θ(111)/(°) | FWHM(111)/(°) | I(111)/(311) | L/nm | Strain/% | ΔStrain/% |
---|---|---|---|---|---|---|---|---|---|
LKMO-0 | 0.2C, 5th | 0.822 | 0.474 | 18.661 | 0.148 | 1.385 | 62.7 | 0.153 | 0.139 |
10C, 5th | 0.813 | 0.469 | 18.823 | 0.155 | 1.663 | 68.0 | 0.292 | ||
LKMO-1 | 0.2C, 5th | 0.824 | 0.476 | 18.679 | 0.171 | 1.394 | 51.0 | 0.338 | 0.020 |
10C, 5th | 0.822 | 0.474 | 18.679 | 0.165 | 1.393 | 51.5 | 0.358 |
Table 3 Crystal structural parameters of LKMO-0 and LKMO-1 after 5 cycles at 0.2C and 10C
Sample | Condition | a/nm | d(111)/nm | 2θ(111)/(°) | FWHM(111)/(°) | I(111)/(311) | L/nm | Strain/% | ΔStrain/% |
---|---|---|---|---|---|---|---|---|---|
LKMO-0 | 0.2C, 5th | 0.822 | 0.474 | 18.661 | 0.148 | 1.385 | 62.7 | 0.153 | 0.139 |
10C, 5th | 0.813 | 0.469 | 18.823 | 0.155 | 1.663 | 68.0 | 0.292 | ||
LKMO-1 | 0.2C, 5th | 0.824 | 0.476 | 18.679 | 0.171 | 1.394 | 51.0 | 0.338 | 0.020 |
10C, 5th | 0.822 | 0.474 | 18.679 | 0.165 | 1.393 | 51.5 | 0.358 |
Sample | Particle size distribution/μm | SBET/(m2·g-1) | ||
---|---|---|---|---|
d10 | d50 | d90 | ||
LKMO-0 | 1.49 | 9.23 | 26.1 | 1.60 |
LKMO-1 | 1.71 | 8.27 | 24.9 | 1.34 |
Table S1 Particle size distributions and specific surface areas of LKMO-0 and LKMO-1
Sample | Particle size distribution/μm | SBET/(m2·g-1) | ||
---|---|---|---|---|
d10 | d50 | d90 | ||
LKMO-0 | 1.49 | 9.23 | 26.1 | 1.60 |
LKMO-1 | 1.71 | 8.27 | 24.9 | 1.34 |
Sample | Average specific discharge capacity/ (mAh·g-1) | ||||||
---|---|---|---|---|---|---|---|
0.2C | 0.5C | 1C | 2C | 5C | 10C | 0.2C | |
LKMO-0 | 106.33 | 97.27 | 90.39 | 77.54 | 48.86 | 27.90 | 102.40 |
LKMO-1 | 100.11 | 99.15 | 97.21 | 93.37 | 82.66 | 56.59 | 96.83 |
LKMO-2 | 106.09 | 101.47 | 90.60 | 72.37 | 44.12 | 24.11 | 103.69 |
LKMO-3 | 102.89 | 100.32 | 91.89 | 65.63 | 37.16 | 16.98 | 98.14 |
Table S3 Rate performances of LKMO-n
Sample | Average specific discharge capacity/ (mAh·g-1) | ||||||
---|---|---|---|---|---|---|---|
0.2C | 0.5C | 1C | 2C | 5C | 10C | 0.2C | |
LKMO-0 | 106.33 | 97.27 | 90.39 | 77.54 | 48.86 | 27.90 | 102.40 |
LKMO-1 | 100.11 | 99.15 | 97.21 | 93.37 | 82.66 | 56.59 | 96.83 |
LKMO-2 | 106.09 | 101.47 | 90.60 | 72.37 | 44.12 | 24.11 | 103.69 |
LKMO-3 | 102.89 | 100.32 | 91.89 | 65.63 | 37.16 | 16.98 | 98.14 |
Sample | Charge-discharge efficiency/% | |||||
---|---|---|---|---|---|---|
0.2C | 0.5C | 1C | 2C | 5C | 10C | |
LKMO-0 | 87.88 | 90.86 | 90.97 | 88.81 | 76.81 | 56.76 |
LKMO-1 | 94.54 | 98.46 | 96.65 | 94.79 | 85.18 | 63.53 |
Table S4 Charge-discharge efficiency at different rates for LKMO-0 and LKMO-1
Sample | Charge-discharge efficiency/% | |||||
---|---|---|---|---|---|---|
0.2C | 0.5C | 1C | 2C | 5C | 10C | |
LKMO-0 | 87.88 | 90.86 | 90.97 | 88.81 | 76.81 | 56.76 |
LKMO-1 | 94.54 | 98.46 | 96.65 | 94.79 | 85.18 | 63.53 |
Sample | Molar concentration/(mmol·L-1) | Molar ratio | ||
---|---|---|---|---|
Li | K | Mn | Li/K/Mn | |
LKMO-0 | 5.895 | - | 10.452 | 1.128/-/2 |
LKMO-1 | 5.914 | 0.055 | 10.775 | 1.097/0.010/2 |
LKMO-2 | 5.805 | 0.101 | 10.668 | 1.088/0.019/2 |
LKMO-3 | 5.716 | 0.154 | 10.546 | 1.084/0.029/2 |
Table S2 Elemental contents of LKMO-n
Sample | Molar concentration/(mmol·L-1) | Molar ratio | ||
---|---|---|---|---|
Li | K | Mn | Li/K/Mn | |
LKMO-0 | 5.895 | - | 10.452 | 1.128/-/2 |
LKMO-1 | 5.914 | 0.055 | 10.775 | 1.097/0.010/2 |
LKMO-2 | 5.805 | 0.101 | 10.668 | 1.088/0.019/2 |
LKMO-3 | 5.716 | 0.154 | 10.546 | 1.084/0.029/2 |
[1] |
DURMUS Y E, ZHANG H, BAAKES F, et al. Side by side battery technologies with lithium-ion based batteries. Advanced Energy Materials, 2020, 10(24): 2000089.
DOI URL |
[2] |
LI L L, LI S Y, LU Y Y. Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications, 2018, 54(50): 6648-6661.
DOI URL |
[3] | DING Y L, CANO Z P, YU A P, et al. Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2019, 2(1): 1-28. |
[4] | MU C H, LOU S A, ALI R, et al. Carbon-decorated LiMn2O4 nanorods with enhanced performance for supercapacitors. Journal of Alloys and Compounds, 2019, 805: 624-630. |
[5] | ZHU Z X, WANG M M, MENG Y H, et al. A high-rate lithium manganese oxide-hydrogen battery. Nano Letters, 2020, 20(5): 3278-3283. |
[6] | LI S Y, ZHU K L, LIU J L, et al. Porous LiMn2O4 microspheres with different pore size: preparation and application as cathode materials for lithium ion batteries. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(1): 1-8. |
[7] | XIANG M W, ZHOU X Y, ZHANG Z F, et al. LiMn2O4 prepared by liquid phase flameless combustion with F-Doped for lithium- ion battery cathode materials. Advanced Materials Research, 2013, 652-654: 825-830. |
[8] | JIANG Q Q, LIU D D, ZHANG H, et al. Plasma-assisted sulfur doping of LiMn2O4 for high-performance lithium-ion batteries. Journal of Physical Chemistry C, 2015, 119(52): 28776-28782. |
[9] | LIU J T, LI G, YU Y, et al. Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2-xO4 (x≤0.20) cathode materials prepared by a solution combustion technique. Journal of Alloys and Compounds, 2017, 728: 1315-1328. |
[10] | CHANDA P, VIVEK BANSALA, SUKRITIA V S. Investigations of spinel LiZnxMn2-xO4(x≤0.03) cathode materials for a lithium ion battery application. Materials Science & Engineering B, 2018, 238-239(DEC): 93-99. |
[11] | XIONG L L, XU Y L, LEI P, et al. The electrochemical performance of sodium-ion-modified spinel LiMn2O4 used for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18(3): 713-719. |
[12] | XIONG L L, XU Y L, XIAO X, et al. The effect of K-ion on the electrochemical performance of spinel LiMn2O4. Electronic Materials Letters, 2015, 11(1): 138-142. |
[13] | CHUDZIK K, ŚWIĘTOSŁAWSKI M, BAKIERSKA M, et al. Electrochemical properties of K and S doped LiMn2O4 studied by GITT and EIS. Electrochimica Acta, 2021, 373: 137901. |
[14] | CHUDZIK K, ŚWIĘTOSŁAWSKI M, BAKIERSKA M, et al. Surface modification and carbon coating effect on a high-performance K and S doped LiMn2O4. Applied Surface Science, 2020, 531:147138. |
[15] | BAKIERSKA M, ŚWIĘTOSŁAWSKI M, CHUDZIK K, et al. Enhancing the lithium ion diffusivity in LiMn2O4-ySy cathode materials through potassium doping. Solid State Ionics, 2018, 317(January): 190-193. |
[16] | RODRÍGUEZ R A, PÉREZ-CAPPE E L, LAFFITA Y M, et al. Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect. Solid State Ionics, 2018, 324(June): 77-86. |
[17] | YU Z M, ZHAO L C. Structure and electrochemical properties of LiMn2O4. Transactions of Nonferrous Metals Society of China, 2007, 17(3): 659-664. |
[18] | MARCHINI F, CALVO E J, WILLIAMS F J. Effect of the electrode potential on the surface composition and crystal structure of LiMn2O4 in aqueous solutions. Electrochimica Acta, 2018, 269: 706-713. |
[19] | ZHAO H Y, LI F, BAI X Z, et al. Enhanced cycling stability of LiCuxMn1.95-xSi0.05O4 cathode material obtained by solid-state method. Materials, 2018, 11(8): 1-10. |
[20] | RAGAVENDRAN K, CHOU H L, LU L, et al. Crystal habits of LiMn2O4 and their influence on the electrochemical performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176(16): 1257-1263. |
[21] | WANG X Y, HAO H, LIU J L, et al. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochimica Acta, 2011, 56(11): 4065-4069. |
[22] | CHEN S, CHEN Z, CAO C B. Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochimica Acta, 2016, 199: 51-58. |
[23] | ZHOU S, WANG G X, XIAO Y, et al. Influence of charge status on the stress safety properties of Li(Ni1/3Co1/3Mn1/3)O2 cells. RSC Advances, 2016, 6(68): 63378-63389. |
[24] | SETHURAMAN V A, VAN WINKLE N, ABRAHAM D P, et al. Real-time stress measurements in lithium-ion battery negative- electrodes. Journal of Power Sources, 2012, 206: 334-342. |
[25] |
FAN G X, WEN Y, LIU B Z, et al. An insight into the influence of crystallite size on the performances of microsized spherical Li(Ni0.5Co0.2Mn0.3)O2 cathode material composed of aggregated nanosized particles. Journal of Nanoparticle Research, 2018, 20(2): 43.
DOI URL |
[26] | KIZILTAŞ-YAVUZ N, HERKLOTZ M, HASHEM A M, et al. Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a Sol-Gel method using table sugar as chelating agent. Electrochimica Acta, 2013, 113: 313-321. |
[27] | GREELEY J, WARBURTON R E, CASTRO F C, et al. Oriented LiMn2O4 particle fracture from delithiation-driven surface stress. ACS Applied Materials and Interfaces, 2020, 12(43): 49182-49191. |
[28] | THACKERAY M M. Exploiting the spinel structure for Li-ion battery applications: a tribute to John B. Goodenough. Advanced Energy Materials, 2021, 11(2): 1-8. |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[3] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[4] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[5] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[6] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[7] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[8] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[9] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[10] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[11] | LI Wenbo, HUANG Minsong, LI Yueming, LI Chilin. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2022, 37(2): 173-181. |
[12] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[13] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. |
[14] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 2021, 36(7): 718-724. |
[15] | WANG Yanan, LI Hua, WANG Zhengkun, LI Qingfeng, LIAN Chen, HE Xin. Progress on Failure Mechanism of Lithium Ion Battery Caused by Diffusion Induced Stress [J]. Journal of Inorganic Materials, 2020, 35(10): 1071-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||