Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (8): 918-924.DOI: 10.15541/jim20210777
Special Issue: 【能源环境】锂离子电池(202409); 【材料计算】计算材料(202409)
• RESEARCH ARTICLE • Previous Articles
CHEN Ying1(), LUAN Weiling1(
), CHEN Haofeng1,2(
), ZHU Xuanchen2
Received:
2021-12-20
Revised:
2022-02-08
Published:
2022-08-20
Online:
2022-02-16
Contact:
LUAN Weiling, professor. E-mail: luan@ecust.edu.cn;About author:
CHEN Ying (1996-), female, PhD. E-mail: yingchen96@ecust.edu.cn
Supported by:
CLC Number:
CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field[J]. Journal of Inorganic Materials, 2022, 37(8): 918-924.
Fig. 1 Multi-scale damage of NCM523 after electrochemical cycles (a) In-particle cracks; (b) Particle breakage; (c) Large cracks in electrode material; (d) Delamination between active material and current
Fig. 3 Crack initiation and propagation of active particle of diameter of 3 μm under the current density of 0.37 A/m2[17] (a) Lithiation process; (b) Delithiation process. The variable STATUSXFEM presents the status of element, and it varies 0 (non-damage status) or 1 (completely cracked)
Fig. 5 SEM images of NCM cathode after cyclic charging- discharging test Different magnification SEM images showing the cracks in the big or small paticles
Fig. 6 (a) Schematic illustration of electrode during the lithiation/ delithiation process, whereby NCM active layer being coated on the Al current collector, and (b) boundary condition and the load applied to electrode during the lithiation stage[20]
Fig. 8 (a) Contour map of plastic strain range and ratcheting strain of NCM active layer of 20 µm thickness for load point (1,1) and (b) picture of NCM cathode before (left) and after (right) cyclic charging-discharging test[20]
[1] |
HENDRICKS C, WILLIARD N, MATHEW S, et al. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. Journal of Power Sources, 2015, 297: 113-120.
DOI URL |
[2] |
XU R, YANG Y, YIN F, et al. Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling. Journal of the Mechanics and Physics of Solids, 2019, 129: 160-183.
DOI URL |
[3] |
WANG Y N, LI H, WANG Z K, et al. Progress on failure mechanism of lithium ion battery caused by diffusion induced stress. Journal of Inorganic Materials, 2020, 35(10): 1071-1087.
DOI URL |
[4] |
RYU H H, NAMKOONG B, KIM, J H, et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Letters, 2021, 6(8): 2726-2734.
DOI URL |
[5] |
PRUSSIN S. Generation and distribution of dislocations by solute diffusion. Journal of Applied Physics, 1961, 32(10): 1876-1881.
DOI URL |
[6] |
HUGGINS R A, NIX W D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics, 2000, 6(1): 57-63.
DOI URL |
[7] |
CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319.
DOI URL |
[8] | ZHAO K, PHARR M, VLASSAK J J, et al. Fracture of electrodes in lithium-ion batteries caused by fast charging. Journal of Applied Physics, 2010, 108(7): 473. |
[9] |
TAKAMURA T, OHARA S, UEHARA M, et al. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. Journal of Power Sources, 2004, 129(1): 96-100.
DOI URL |
[10] |
ZHAO K, TRITSARIS G A, PHARR M, et al. Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Letters, 2012, 12(8): 4397-4403.
DOI URL |
[11] | LEE Y K, SONG J, PARK J, et al. Multi-scale coupled mechanical-electrochemical modeling for study on stress generation and its impact on multi-layered electrodes in lithium-ion batteries. Electrochimica Acta, 2021, 389: 138682. |
[12] |
FERRARO M E, TREMBACKI B L, BRUNINI V E, et al. Electrode mesoscale as a collection of particles: coupled electrochemical and mechanical analysis of NMC cathodes. Journal of the Electrochemical Society, 2020, 167(1): 013543.
DOI URL |
[13] | ABAQUS. ABAQUS/CAE user’s guide, Version 6.14. Dassault Syst` emes Simulia Corp., Providence, RI, USA, 2014. |
[14] | BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Biomedical Engineering, 1999, 45(5): 601-20. |
[15] |
CHEN H, PONTER A. Shakedown and limit analyses for 3-D structures using the linear matching method. International Journal of Pressure Vessels and Piping, 2001, 78: 443-451.
DOI URL |
[16] |
CHEN H, PONTER A. A direct method on the evaluation of ratchet limit. Journal of Pressure Vessel Technology, 2010, 132(4): 041202.
DOI URL |
[17] | ZHU X, CHEN Y, CHEN H, et al. The diffusion induced stress and cracking behavior of primary particle for Li-ion battery electrode. International Journal of Mechanical Sciences, 2020, 178: 105608. |
[18] |
ZHANG J, LU B, SONG Y, et al. Diffusion induced stress in layered Li-ion battery electrode plates. Journal of Power Sources, 2012, 209: 220-227.
DOI URL |
[19] | NADIMPALLI S P V, SETHURAMAN V A, ABRAHAM D P, et al. Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing. Journal of The Electrochemical Society, 2015, 162: A2656-A2663. |
[20] | CHEN Y, LUAN W, CHEN H. Shakedown, ratcheting and fatigue analysis of cathode coating in lithium-ion battery under steady charging-discharging process. Journal of the Mechanics and Physics of Solids, 2021, 150: 104366. |
[21] | MANSON S S. Fatigue: a complex subject-some simple approximations. Experimantal Mechanics, 1965, 5: 193-226. |
[1] | WANG Kunpeng, LIU Zhaolin, LIN Cunsheng, WANG Zhiyu. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode [J]. Journal of Inorganic Materials, 2024, 39(9): 1005-1012. |
[2] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[3] | ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Property Manipulation and Its Effect on SOFC Electrochemical Performance [J]. Journal of Inorganic Materials, 2024, 39(4): 367-373. |
[4] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[5] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[6] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[7] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[8] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[9] | TAN Shuyu, LIU Xiaoning, BI Zhijie, WAN Yong, GUO Xiangxin. Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes [J]. Journal of Inorganic Materials, 2023, 38(12): 1466-1474. |
[10] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[11] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[12] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[13] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[14] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[15] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||