Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 789-806.DOI: 10.15541/jim20200544
• REVIEW • Previous Articles Next Articles
LI Jiang1(), DING Jiyang1,2, HUANG Xinyou2
Received:
2020-09-17
Revised:
2020-12-07
Published:
2021-08-20
Online:
2021-03-01
About author:
Li Jiang(1977-), male, professor. E-mail: lijiang@mail.sic.ac.cn
Supported by:
CLC Number:
LI Jiang, DING Jiyang, HUANG Xinyou. Rare Earth Doped Gd2O2S Scintillation Ceramics[J]. Journal of Inorganic Materials, 2021, 36(8): 789-806.
Fig. 2 History (1940-2017) of first publication of scintillators with light output of >20000 ph/MeV, representing scintillators published in peer-reviewed articles [18] Blue bars: new compounds; Yellow bars: known compounds with new activator or codoped; Red letters: commercial products; Green letters: under development
Scintillator | Density/(g·cm-3) | Zeff/cm | Decay time/ns | λem/nm | Light yield/(×103, ph/MeV) | Ref. |
---|---|---|---|---|---|---|
NaI:Tl | 3.67 | 50.8 | 230 | 415 | 43 | [ |
LaI:Ce | 5.6 | 54.2 | 1-2 | 452, 502 | 0.2-0.3 | [ |
SrI2:Eu | 4.55 | 49.85 | 1200 | 435 | 115 | [ |
BaBrI:Eu | 5.21 | 51.1 | 331-714 | 413 | 89 | [ |
Bi4Ge3O12 | 7.13 | 75.2 | 300 | 505 | 8.2 | [ |
PbWO4 | 8.28 | 75.6 | 6 | 420 | 0.1 | [ |
CaWO4 | 6.1 | 63.8 | 600 | 430 | 20 | [ |
Gd2O2S:Pr,Ce,F | 7.34 | 61.1 | 4000 | 510 | 35 | [ |
YAlO3:Ce | 5.5 | 33.6 | 30 | 350 | 21 | [ |
Y3Al5O12:Pr | 4.56 | 32.6 | 23.4 | 310, 380 | 9.25 | [ |
Gd2SiO5:Ce | 6.71 | 59.4 | 60-600 | 430 | 12.5 | [ |
Y2SiO5:Pr | 4.45 | 35 | 6.5-33 | 270, 35 | 4.58 | [ |
Gd3Al2Ga3O12:Ce | 6.67 | 50.6 | 80-800 | 520 | 46 | [ |
(Gd,Y)3(Al,Ga)5O12:Ce | 5.8 | 45 | 100-600 | 560 | 60 | [ |
Table 1 Optical and scintillation properties of selected scintillators
Scintillator | Density/(g·cm-3) | Zeff/cm | Decay time/ns | λem/nm | Light yield/(×103, ph/MeV) | Ref. |
---|---|---|---|---|---|---|
NaI:Tl | 3.67 | 50.8 | 230 | 415 | 43 | [ |
LaI:Ce | 5.6 | 54.2 | 1-2 | 452, 502 | 0.2-0.3 | [ |
SrI2:Eu | 4.55 | 49.85 | 1200 | 435 | 115 | [ |
BaBrI:Eu | 5.21 | 51.1 | 331-714 | 413 | 89 | [ |
Bi4Ge3O12 | 7.13 | 75.2 | 300 | 505 | 8.2 | [ |
PbWO4 | 8.28 | 75.6 | 6 | 420 | 0.1 | [ |
CaWO4 | 6.1 | 63.8 | 600 | 430 | 20 | [ |
Gd2O2S:Pr,Ce,F | 7.34 | 61.1 | 4000 | 510 | 35 | [ |
YAlO3:Ce | 5.5 | 33.6 | 30 | 350 | 21 | [ |
Y3Al5O12:Pr | 4.56 | 32.6 | 23.4 | 310, 380 | 9.25 | [ |
Gd2SiO5:Ce | 6.71 | 59.4 | 60-600 | 430 | 12.5 | [ |
Y2SiO5:Pr | 4.45 | 35 | 6.5-33 | 270, 35 | 4.58 | [ |
Gd3Al2Ga3O12:Ce | 6.67 | 50.6 | 80-800 | 520 | 46 | [ |
(Gd,Y)3(Al,Ga)5O12:Ce | 5.8 | 45 | 100-600 | 560 | 60 | [ |
Property | Feature |
---|---|
Molecular formula | Gd2O2S |
Relative molecular mass | 378 |
Crystal structure | Hexagonal crystal system |
Cell parameters | a=0.38514 nm, c/a=1.73 |
Melting point | 2070 ℃ |
Density | 7.34 g/cm3 |
Zeff | 61.1 |
Index of refraction | 2.2 |
Band gap | 4.6-4.8 eV |
Phonon energy | 520 cm-1 |
Color | Colorless |
Technical aspects | Chemical stability |
Table 2 Basic physical and chemical property of Gd2O2S[41,42]
Property | Feature |
---|---|
Molecular formula | Gd2O2S |
Relative molecular mass | 378 |
Crystal structure | Hexagonal crystal system |
Cell parameters | a=0.38514 nm, c/a=1.73 |
Melting point | 2070 ℃ |
Density | 7.34 g/cm3 |
Zeff | 61.1 |
Index of refraction | 2.2 |
Band gap | 4.6-4.8 eV |
Phonon energy | 520 cm-1 |
Color | Colorless |
Technical aspects | Chemical stability |
Fig. 4 FE-SEM images of different powder[52] (a) Commercial Gd2O3 powder; (b) Gd2O3 powder synthesized by coprecipitation; (c) Synthesis by commercial powder; (d) Synthesis by coprecipitation powder
Fig. 7 Fluorescence spectra of GOS:Tb powders under different accelerating voltages and electron beam currents[70] (A) Different accelerating voltages; (B) Different beam currents; (C) Variation of luminous intensity with voltage and current; (D) Calculated incident electron depth varied with voltage Colorful figures are available on website
Fig. 9 FESEM images of the fracture surfaces and EDS analysis[58] (a) Green body; (b) Pre-sintered body; (c) After hot isotatic pressing; (d) EDS analysis of the selected area in (c)
Fig. 10 Microstructures of GOS ceramics prepared by pressureless sintering under different conditions[78] (a) 1380 ℃×6 h, 1.0 K/min; (b) 1300 ℃×3 h, 2.8 K/min
Fig. 11 Pulse height spectra (a) of GOS:Pr, Ce, F ceramics with different thicknesses prepared by pressureless sintering and commercial GOS ceramics, and afterglow curve (b) of GOS:Pr,Ce,F ceramics by pressureless sintering and commercial ceramics[79] (a) Sample thickness is 0.5 mm, 1.0 mm, and 1.5 mm, respectively; (b) Commercial ceramic thickness is 0.5 mm Colorful figures are available on website
Scintillators | λem/nm | Decay time/μs | Afterglow/(%, after 3 ms/100 ms) | Light yield/(ph·MeV-1) | Ref. |
---|---|---|---|---|---|
Gd2O2S:Pr,Ce,F | 510 | 4 | <0.1/<0.01 | 35000 | [ |
Gd2O2S:Tb | 545 | 1×103 | - | 60000 | [ |
Gd2O2S:Eu | 625 | 1×103 | 0.14%@3 ms | 60000 | [ |
Gd2O2S:Eu,Tb,Ce,Ca | 600 | - | 0.18%@30 ms | 62000 | [ |
Table 3 Scintillation property of GOS ceramics doped with different rare earth ions
Scintillators | λem/nm | Decay time/μs | Afterglow/(%, after 3 ms/100 ms) | Light yield/(ph·MeV-1) | Ref. |
---|---|---|---|---|---|
Gd2O2S:Pr,Ce,F | 510 | 4 | <0.1/<0.01 | 35000 | [ |
Gd2O2S:Tb | 545 | 1×103 | - | 60000 | [ |
Gd2O2S:Eu | 625 | 1×103 | 0.14%@3 ms | 60000 | [ |
Gd2O2S:Eu,Tb,Ce,Ca | 600 | - | 0.18%@30 ms | 62000 | [ |
Isotope | Reaction | Cross-section of thermal neutron adsorption/m2 | Natural abundance/% | Ref. |
---|---|---|---|---|
6Li | 3H, 4He | 9.1×10-26 | 7.5 | [ |
10B | α, γ, 7Li | 3.83×10-25 | 19.9 | [ |
113Cd | γ, e- | 2.1×10-24 | 12.2 | [ |
155Gd | γ, e- | 6.09×10-24 | 14.7 | [ |
157Gd | γ, e- | 2.55×10-23 | 15.7 | [ |
Table 4 Property of commonly used neutron imaging scintillation screen nuclides
Isotope | Reaction | Cross-section of thermal neutron adsorption/m2 | Natural abundance/% | Ref. |
---|---|---|---|---|
6Li | 3H, 4He | 9.1×10-26 | 7.5 | [ |
10B | α, γ, 7Li | 3.83×10-25 | 19.9 | [ |
113Cd | γ, e- | 2.1×10-24 | 12.2 | [ |
155Gd | γ, e- | 6.09×10-24 | 14.7 | [ |
157Gd | γ, e- | 2.55×10-23 | 15.7 | [ |
Scintillator | Density/ (g·cm-3) | λem/nm | Light yield | α/β ratio | τ/ns | Ref. | ||
---|---|---|---|---|---|---|---|---|
Neutron/(×103, ph·neu.-1) | γ/(×103, ph·MeV-1) | Neutron | γ | |||||
6Li-glass:Ce | 2.5 | 395 | 6 | 4 | 0.3 | 70 | 70 | [ |
6LiI:Eu | 4.1 | 470 | 50 | 12 | 0.87 | 1.4×103 | 1.4×103 | [ |
6LiF/ZnS:Ag | 2.6 | 450 | 160 | 75 | 0.44 | 8×104 | 100 | [ |
LiYSiO4:Ce | 3.8 | 410 | 10 | 10 | - | - | 3.8×104 | [ |
6Li6Gd(11BO3)3:Ce | 3.5 | 385, 415 | 40 | 25 | 0.32 | - | 200,800 | [ |
Cs26LiYCl6:Ce | 3.3 | 380 | 70 | 22 | 0.66 | 100,103 | 100,103 | [ |
Table 5 Inorganic scintillators used in neutron imaging and their properties
Scintillator | Density/ (g·cm-3) | λem/nm | Light yield | α/β ratio | τ/ns | Ref. | ||
---|---|---|---|---|---|---|---|---|
Neutron/(×103, ph·neu.-1) | γ/(×103, ph·MeV-1) | Neutron | γ | |||||
6Li-glass:Ce | 2.5 | 395 | 6 | 4 | 0.3 | 70 | 70 | [ |
6LiI:Eu | 4.1 | 470 | 50 | 12 | 0.87 | 1.4×103 | 1.4×103 | [ |
6LiF/ZnS:Ag | 2.6 | 450 | 160 | 75 | 0.44 | 8×104 | 100 | [ |
LiYSiO4:Ce | 3.8 | 410 | 10 | 10 | - | - | 3.8×104 | [ |
6Li6Gd(11BO3)3:Ce | 3.5 | 385, 415 | 40 | 25 | 0.32 | - | 200,800 | [ |
Cs26LiYCl6:Ce | 3.3 | 380 | 70 | 22 | 0.66 | 100,103 | 100,103 | [ |
Scintillator | Density/(g·cm-3) | Thickness to stop 99%*/mm | λem/nm | Light yield/ (ph·MeV-1) | Decay time/μs | Afterglow/(% after 3 ms/100 ms) | Ref. |
---|---|---|---|---|---|---|---|
CsI:Tl | 4.51 | 6.8 | 550 | 66000 | 1.22 | >2/0.3 | [ |
Bi4Ge3O12 | 7.13 | - | 480 | 9000 | 0.30 | 0.005%@3 ms | [ |
CdWO4 | 7.9 | 2.4 | 495 | 20000 | 5.00 | <0.1/0.02 | [ |
(Y,Gd)2O3:Eu,Pr | 5.9 | 6.1 | 610 | 42000 | 1000 | 4.9/<0.01 | [ |
Gd2O2S:Pr,Ce,F | 7.3 | 2.9 | 510 | 35000 | 4 | <0.1/<0.01 | [ |
Gd3(Ga,Al)2O12:Ce | 6.2 | - | 540 | 58000 | 0.09-0.17 | <0.01%@20 ms | [ |
Table 6 Inorganic scintillators for medical imaging and their properties
Scintillator | Density/(g·cm-3) | Thickness to stop 99%*/mm | λem/nm | Light yield/ (ph·MeV-1) | Decay time/μs | Afterglow/(% after 3 ms/100 ms) | Ref. |
---|---|---|---|---|---|---|---|
CsI:Tl | 4.51 | 6.8 | 550 | 66000 | 1.22 | >2/0.3 | [ |
Bi4Ge3O12 | 7.13 | - | 480 | 9000 | 0.30 | 0.005%@3 ms | [ |
CdWO4 | 7.9 | 2.4 | 495 | 20000 | 5.00 | <0.1/0.02 | [ |
(Y,Gd)2O3:Eu,Pr | 5.9 | 6.1 | 610 | 42000 | 1000 | 4.9/<0.01 | [ |
Gd2O2S:Pr,Ce,F | 7.3 | 2.9 | 510 | 35000 | 4 | <0.1/<0.01 | [ |
Gd3(Ga,Al)2O12:Ce | 6.2 | - | 540 | 58000 | 0.09-0.17 | <0.01%@20 ms | [ |
Fig. 17 Afterglow (a) and X-ray absorption efficiency (b) curves of German Siemens GOS (UFC ) scintillation ceramics[117] Colorful figures are available on website
Manufacturer | λem/nm | Light yield/(ph·MeV-1) | Decay time/μs | Afterglow | Ref. |
---|---|---|---|---|---|
Siemens (Germany) | 512 | 50000 | 3 | 0.01%@2.5-4 ms | [ |
Philips (Netherlands) | 514 | 40000 | 3 | 0.02%@3 ms | [ |
Toshiba (Japan) | 512 | 36000 | 3 | 0.08%@10 ms | [ |
Hitachi (Japan) | 512 | 42000 | 3 | 0.001%@300 ms | [ |
Iray (China) | 510 | 27000 | 3 | 0.1%@3 ms | [ |
Table 7 Performance of GOS:Pr,Ce(F) scintillation ceramics prepared in the major companies abroad and at home
Manufacturer | λem/nm | Light yield/(ph·MeV-1) | Decay time/μs | Afterglow | Ref. |
---|---|---|---|---|---|
Siemens (Germany) | 512 | 50000 | 3 | 0.01%@2.5-4 ms | [ |
Philips (Netherlands) | 514 | 40000 | 3 | 0.02%@3 ms | [ |
Toshiba (Japan) | 512 | 36000 | 3 | 0.08%@10 ms | [ |
Hitachi (Japan) | 512 | 42000 | 3 | 0.001%@300 ms | [ |
Iray (China) | 510 | 27000 | 3 | 0.1%@3 ms | [ |
[1] |
GLODO J, WANG Y, SHAWGO R, et al. New developments in scintillators for security applications. Physics Procedia , 2017, 90:285-290.
DOI URL |
[2] | LECOQ P. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2016, 809:130-139. |
[3] |
MARTIN T, KOCH A, NIKL M. Scintillator materials for X-ray detectors and beam monitors. MRS Bulletin , 2017, 42(6):451-457.
DOI URL |
[4] |
NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials , 2015, 3(4):463-481.
DOI URL |
[5] |
WEBER M J. Inorganic scintillators: today and tomorrow. Journal of Luminescence , 2002, 100(1-4):35-45.
DOI URL |
[6] | VAN EIJK C W E. Inorganic-scintillator development. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2001, 460(1):1-14. |
[7] |
LEMPICKI A, BRECHER C, LINGERTAT H, et al. A ceramic version of the LSO scintillator. IEEE Transactions on Nuclear Science , 2008, 55(3):1148-1151.
DOI URL |
[8] | 潘裕柏, 李江, 姜本学. 先进光功能透明陶瓷. 北京: 科学出版社, 2013: 24-28. |
[9] |
MURRAY R B, MEYER A. Scintillation response of activated inorganic crystals to various charged particles. Physical Review , 1961, 122(3):815-826.
DOI URL |
[10] |
PAYNE S A, CHEREPY N J, HULL G, et al. Nonproportionality of scintillator detectors: theory and experiment. IEEE Transactions on Nuclear Science , 2009, 56(4):2506-2512.
DOI URL |
[11] |
KIRKIN R, MIKHAILIB V V, VASILEV A N. Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Transactions on Nuclear Science , 2012, 59(5):2057-2064.
DOI URL |
[12] |
VASILEV A N, GEKTIN A V. Multiscale approach to estimation of scintillation characteristics. IEEE Transactions on Nuclear Science , 2013, 61(1):235-245.
DOI URL |
[13] |
NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi B , 2008, 245(9):1701-1722.
DOI URL |
[14] | LECOQ P, GEKTIN A, KORZHIK M. Scintillation Mechanisms in Inorganic Scintillators. Berlin: Springer , 2017: 125-174. |
[15] |
NIKL M, PEJCHAL J, MIHOKOVA E, et al. Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator. Applied Physics Letters , 2006, 88(14):141916.
DOI URL |
[16] | GEKTIN A, KORZHIK M. Inorganic Scintillators for Detector Systems. Berlin: Springer, 2017: 20-77. |
[17] | COLTMAN J W, MARSHALL F H. Some characteristics of the photo-multiplier radiation detector. Physical Review , 1947, 72:528. |
[18] |
DUJARDIN C, AUFFRAY E, BOURRET-COURCHESNE E, et al. Needs, trends, and advances in inorganic scintillators. IEEE Transactions on Nuclear Science , 2018, 65(8):1977-1997.
DOI URL |
[19] |
HOFSTADTER R. The detection of gamma-rays with thallium- activated sodium iodide crystals. Physical Review , 1949, 75(5):796-810.
DOI URL |
[20] | VANSCIVER W, HOFSTADTER R. Scintillations in thallium- activated CaI2 and CsI. Physical Review , 1951, 84(5):1062-1063. |
[21] |
WEBER M J, MONCHAMP R R. Luminescence of Bi4Ge3O12: spectral and decay properties. Journal of Applied Physics , 1973, 44(12):5495-5499.
DOI URL |
[22] | ERSHOV N N, ZAKHAROV N G, RODNYI P A. Spectral- kinetic study of the intrinsic-luminescence characteristics of a fluorite-type crystal. Optics and Spectroscopy , 1982, 53:51-54. |
[23] |
SAKAI E. Recent measurements on scintillator-photodetector systems. IEEE Transactions on Nuclear Science , 1987, 34(1):418-422.
DOI URL |
[24] | BESSIERE A, DORENBOS P, VAN EIJK C W E, et al. Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2005, 537(1/2):22-26. |
[25] |
CHEREPY N J, PAYNE S A, ASZTALOS S J, et al. Scintillators with potential to supersede lanthanum bromide. IEEE Transactions on Nuclear Science , 2009, 56(3):873-880.
DOI URL |
[26] | GUNDIAH G, BIZARRI G, HANRAHAN S M, et al. Structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2011, 652(1):234-237. |
[27] |
HOLL I, LORENZ E, MAGERAS G. A measurement of the light yield of common inorganic scintillators. IEEE Transactions on Nuclear Science , 1988, 35(1):105-109.
DOI URL |
[28] | ANNENKOV A A, KORZHIK M V, LECOQ P. Lead tungstate scintillation material. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment , 2002, 490(1/2):30-50. |
[29] | VAN EIJK C W E. Inorganic scintillators in medical imaging. Physics in Medicine & Biology , 2002, 47(8):R85. |
[30] |
DORENBOS P, MAISMAN M, VAN EIJK C W E et al. Scintillation properties of Y2SiO5: Pr crystals. Radiation Effects and Defects in Solids , 1995, 135(1-4):325-328.
DOI URL |
[31] |
KAMADA K, YANAGIDA T, ENDO T, et al. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. Journal of Crystal Growth , 2012, 352(1):88-90.
DOI URL |
[32] |
CHEREPY N J, SEELEY Z M, PAYNE S A, et al. Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Transactions on Nuclear Science , 2013, 60(3):2330-2335.
DOI URL |
[33] | CONTL M. State of the art and challenges of time-of-flight PET. Phys. Med.-Eur. J. Med. Phys. , 2009, 25(1):1-11. |
[34] |
NIKL M. Wide band gap scintillation materials: progress in the technology and material understanding. Physica Status Solidi A , 2000, 178(2):595-620.
DOI URL |
[35] | WANG C, REN G H. Research progress of garnet series scintillation crystals. Journal of the Chinese Ceramic Society , 2015, 43(7):882-891. |
[36] |
MOSZYNSKI M, LUDZIEJEWSKI T, WOLSKI D, et al. Properties of the YAG:Ce scintillator. Nuclear Instruments and Methods Physical Research Section A , 1994, 345(3):461-467.
DOI URL |
[37] | LI J, CHEN X P, KOU H M, et al. Recent development on garnet single crystal and ceramic scintillators. Journal of the Chinese Ceramic Society , 2018, 46(1):116-127. |
[38] | 刘书萍. LuAG:Ce透明闪烁陶瓷的制备及其性能优化研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2016. |
[39] | 陈肖朴. 高光输出快衰减铈掺杂石榴石闪烁陶瓷的制备与性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2020. |
[40] |
KAMADA K, KUROSAWA S, PRUSA P, et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Optical Materials , 2014, 36(12):1942-1945.
DOI URL |
[41] | 潘宏明. 中子成像用Gd2O2S:Tb闪烁陶瓷的制备与性能研究. 江苏: 江苏大学硕士学位论文, 2019. |
[42] |
DANIEL J H, SAWANT A, TEEPE M, et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray images. Sensors and Actuators A: Physical , 2007, 140(2):185-193.
DOI URL |
[43] | LIAN J B. First-principles study on the electronic structure and optical properties of Gd2O2S. Bulletin of the Chinese Ceramic Society , 2011, 30(05):1029-1033. |
[44] |
WU G Q, QIN H M, FENG S W, et al. Ultrafine Gd2O2S:Pr powders preparedvia urea precipitation method using SO2/SO42- as sulfuration agent-a comparative study. Powder Technology , 2017, 305:382-388.
DOI URL |
[45] |
HE C, XIA Z G, LIU Q L. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Optical Materials , 2015, 42:11-16.
DOI URL |
[46] |
ZHAN Y H, AI F R, CHEN F, et al. Intrinsically zirconium-89 labeled Gd2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small , 2016, 12(21):2872-2876.
DOI URL |
[47] |
POPOVICI E J, MURESAN L, HRISTEA-SIMOC A, et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials , 2004, 27(3):559-565.
DOI URL |
[48] |
GRESKOVICH C, DUCLOS S. Ceramic scintillator. Annual Review of Materials Science , 1997, 27(3):69-88.
DOI URL |
[49] | PEARSON, RALPH G. Hard and soft acids and bases. Journal of the American Chemical society , 1963: 3533-3539. |
[50] |
HAN P D, ZHANG L, WANG L X, et al. Investigation on the amounts of Na2CO3 and sulphur to obtain pure Y2O2S and up-conversion luminescence of Y2O2S:Er. Journal of Rare Earths , 2011, 29(9):849-854.
DOI URL |
[51] |
DING Y J, YANG W M, ZHANG Q T, et al. Influence of alkali metal compound fluxes on Gd2O2S:Tb particle and luminescence. Journal of Materials Science: Materials in Electronics , 2015, 26(3):1982-1986.
DOI URL |
[52] |
DING Y J, HAN P D, WANG L X, et al. Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials. Rare Metals , 2019, 38(3):221-226.
DOI URL |
[53] | USTABAEV P S, BAKHMETYEV V V. Synthesis and properties study of the X-ray phosphors Gd2O2S:Tb. Journal of Physics: Conference Series. IOP Publishing , 2020, 1560(1):012022. |
[54] |
TIAN Y, CAO W H, LUO X X, et al. Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method. Journal of Alloys and Compounds , 2007, 433(1/2):313-317.
DOI URL |
[55] |
THIRUMALAI J, CHANDRAMOHAN R, DIVAKAR R, et al. Eu3+ doped gadolinium oxysulfide (Gd2O2S) nanostructures- synthesis and optical and electronic properties. Nanotechnology , 2008, 19(39):395703.
DOI URL |
[56] |
SONG Y H, YOU H P, HUANG Y J, et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln=Eu,Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorganic Chemistry , 2010, 49(24):11499-11504.
DOI URL |
[57] | LEPPERT J. Method for Producing Rare Earth Oxysulfide Powder. United States, C01F17/00, US6296824. 2001.10.02. |
[58] |
LIU Q, PAN H M, CHEN X P, et al. Gd2O2S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials , 2019, 94:299-304.
DOI URL |
[59] |
LIU Q, WU F, CHEN X P, et al. Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials , 2020, 104:109946.
DOI URL |
[60] | TERAZAWA S, NITTA H. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method, Scintillator Array, and Radiation Detector. United States, CO1F17/0093, US9896623. 2018.2.20. |
[61] |
LIANG J B, MA R Z, GENG F X, et al. OLn2(H)4SO4·nH2O (Ln=Pr to Tb; n~2): a new family of layered rare-earth hydroxides rigidly pillared by sulfate ions. Chemistry of Materials , 2010, 22(21):6001-6007.
DOI URL |
[62] |
WANG X J, MOLOKEEV M S, ZHU Q, et al. Controlled hydrothermal crystallization of anhydrous Ln2(OH)4SO4 (Ln= Eu-Lu,Y) as a new family of layered rare earth metal hydroxides. Chemistry-A European Journal , 2017, 23(63):16034-16043.
DOI URL |
[63] |
WANG X J, LI J G, MOLOKEEV M S, et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)2O2SO4 and (La,RE)2O2S phosphors (RE=Pr,Sm,Eu,Tb and Dy). Chemical Engineering Journal , 2016, 302:577-586.
DOI URL |
[64] |
WANG X J, LI J G, ZHU Q, et al. Facile and green synthesis of (La0.95Eu0.05) 2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials , 2013, 15(1):014204.
DOI URL |
[65] |
WANG X J, WANG X J, WANG Z H, et al. Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. Journal of the American Ceramic Society , 2018, 101(12):5477-5486.
DOI URL |
[66] |
RIZKALLA E N, CHOPPIN G R. Hydration of lanthanides and actinides in solution. Journal of Alloys and Compounds , 1992, 180(1/2):325-336.
DOI URL |
[67] |
LIAN J B, LIU F, WANG X J, et al. Hydrothermal synthesis and photoluminescence properties of Gd2O2SO4:Eu3+ spherical phosphor. Powder Technology , 2014, 253:187-192.
DOI URL |
[68] |
LIAN J B, QIN H, LIANG P, et al. Controllable synthesis and photoluminescence properties of Gd2O2S:x%Pr3+ microspheres using an urea-ammonium sulfate (UAS) system. Ceramics International , 2015, 41(2):2990-2998.
DOI URL |
[69] |
SANG X T, LIAN J B, WU N C, et al. Synthesis, characterization and formation mechanism of Gd2O2S:Pr3+,Ce3+ phosphors by sealed triple-crucible method. Journal of Asian Ceramic Societies , 2020, 8(3):733-744.
DOI URL |
[70] |
WANG X J, MENG Q H, LI M T, et al. A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors. Journal of the American Ceramic Society , 2019, 102(6):3296-3306.
DOI URL |
[71] | BOLYASNIKOVA L, DEMIDENKO V, GOROKHOVA E, et al. Fluorescent Ceramic and Fabrication Method Thereof. United States, C09K11/17, US8025817. 2011.09.27. |
[72] |
GOROKHOVA E I, DEMIDENKO V A, MIKHRIN S B, et al. Luminescence and scintillation properties of Gd2O2S:Tb,Ce ceramics. IEEE Transactions on Nuclear Science , 2005, 52(6):3129-3132.
DOI URL |
[73] |
GOROKHOVA E I, DEMIDENKO V A, ERONKO S B, et al. Luminescence and scintillation properties of Gd2O2S:Eu optical ceramic. Journal of Optical Technology , 2010, 77(1):50-58.
DOI URL |
[74] | ZEITLER G, SCHREINEMACHER H, RONDA C. Hot Axial Pressing Method. United States, B29C47/76, US8221664. 2012.07.17. |
[75] |
ITO Y, YAMADA H, YOSHIDA M, et al. Hot isostatic pressed Gd2O2S:Pr,Ce,F translucent scintillator ceramics for X-ray computed tomography detectors. Japanese Journal of Applied Physics , 1988, 27(8A):L1371.
DOI URL |
[76] | LACOURSE B C, ZANDI M. Rare Earth Oxysulfide Scintillator and Methods for Producing Same. United states, C09K II/84. US8460578. 2013.06.11. |
[77] | WANG Y C, ZHANG Q J, LI Y J, et al. Process for the Preparation of Gadolinium Oxysulfide Scintillation Ceramics. United States, C09K11/77, US9771515. 2017.09.26. |
[78] | KOBUSCH M, ROSSNER W. Method for Producing a Scintillator Ceramic. United States, C04B33/32, US7303699. 2007.12.04. |
[79] |
WANG W, LI Y S, KOU H M, et al. Fabrication of Gd2O2S:Pr,Ce,F scintillation ceramics by pressureless sintering in nitrogen atmosphere. International Journal of Applied Ceramic Technology , 2015, 12:E249-E255.
DOI URL |
[80] |
BLASSE G. Scintillator materials. Chemistry of Materials , 1994, 6(9):1465-1475.
DOI URL |
[81] | 王伟. 面向医用CT 闪烁陶瓷 Gd2O2S: Pr,Ce的制备和性能表征. 上海: 华东理工大学博士学位论文, 2015. |
[82] |
WANG W, KOU H M, LIU S P, et al. Optical and scintillation properties of Gd2O2S:Pr,Ce,F ceramics fabricated by spark plasma sintering. Ceramics International , 2015, 41(2):2576-2581.
DOI URL |
[83] |
PAN H M, LIU Q, CHEN X P, et al. Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials , 2020, 105:109909.
DOI URL |
[84] |
KANDARAKIS I, CAVOURAS D. Role of the activator in the performance of scintillators used in X-ray imaging. Applied Radiation and Isotopes , 2001, 54(5):821-831.
DOI URL |
[85] |
MICHAIL C, VALAIS I, SEFERIS I, et al. Measurement of the luminescence properties of Gd2O2S:Pr,Ce,F powder scintillators under X-ray radiation. Radiation measurements , 2014, 70:59-64.
DOI URL |
[86] | TAKAHASHI M, YUMURA T, YODA I, et al. Visualization of bubbles behavior in lead-bismuth eutectic by gamma-ray. International Conference on Nuclear Engineering , 2010, 49323:533-539. |
[87] | YAMADA H, MIURA I, DOI M, et al. Phosphor, and Radiation Detector and X-ray CT Unit Each Equipped Therewith. United States, C09K11/86, US6340436. 2002.01.22. |
[88] |
DA SILVA A A, CEBIM M A, DAVOLOS M R. Excitation mechanisms and effects of dopant concentration in Gd 2O2S:Tb3+ phosphor. Journal of Luminescence , 2008, 128(7):1165-1168.
DOI URL |
[89] | GRABMAIER C, BOEDINGER H, LEPPERT J. Phosphor with an Additive for Reducing Afterglow: United States, C09K11/08, US5560867. 1996.10.01. |
[90] |
NAKAMURA R, YAMADA N, ISHII M. Effects of halogen ions on the X-ray characteristics of Gd2O2S:Pr ceramic scintillator. Japanese Journal of Applied Physics , 1999, 38(12R):6923.
DOI URL |
[91] | ROSSNER W, OSTERTAG M, JERMANN F. Properties and applications of gadolinium oxysulfide based ceramic scintillators. Electrochemical Society Proceedings , 1999, 98(24):187-194. |
[92] |
ZHANG J W, LIU Y L, MAN S Q. Afterglow phenomenon in erbium and titanium codoped Gd2O2S phosphors. Journal of Luminescence , 2006, 117(2):141-146.
DOI URL |
[93] |
KHARIEKY A A, SARAEE K R E. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd2O3, Gd2O2S and Gd2O2SO4 nanocrystalline phosphors. Journal of Luminescence , 2020, 220:116979.
DOI URL |
[94] |
KARDJILOV N, MANKE I, WORACEK R, et al. Advances in neutron imaging. Materials Today , 2018, 21(6):652-672.
DOI URL |
[95] | KARDJILOV N, DAWSON M, HILGER A, et al. A highly adaptive detector system for high resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2011, 651(1):95-99. |
[96] | ANDERSON I S, MCGREEVY R L, BILHRUX H Z. Neutron imaging and applications. Springer Science Business Media , 2009, 200(2209):47-63. |
[97] |
GALUNOV N Z, GRINYOV B V, KARAVAEVA N L, et al. Gd-bearing composite scintillators as the new thermal neutron detectors. IEEE Transactions on Nuclear Science , 2011, 58(1):339-346.
DOI URL |
[98] |
BACKLIN A, HOLMBERG N E, BACKSTROM G. Internal conversion study of 113Cd (n, γ)114Cd. Nuclear Physics , 1966, 80(1):154-176.
DOI URL |
[99] |
VAN EIJK C W E. Inorganic scintillators for thermal neutron detection. IEEE Transactions on Nuclear Science , 2012, 59(5):2242-2247.
DOI URL |
[100] | SUN R K S. Photo-energy calibration of 6LiI (Eu) crystals in mixed radiation fields using 24Na. Health Physics , 1987, 53(2):191-196. |
[101] |
DORENBOS P, DE HAAS J T M, VAN EIJK C. Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Transactions on Nuclear Science , 1995, 42(6):2190-2202.
DOI URL |
[102] |
KNITEL M J, DORENBOS P, COMBES C M, et al. Luminescence and storage properties of LiYSiO4: Ce. Journal of Luminescence , 1996, 69(5/6):325-334.
DOI URL |
[103] | VAN EIJK C W E, BESSIER A, DORENBOS P. Inorganic thermal-neutron scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment , 2004, 529(1/2/3):260-267. |
[104] |
VAN EIJK C W E. Inorganic scintillators for thermal neutron detection. Radiation Measurements , 2004, 38(4/5/6):337-342.
DOI URL |
[105] | YASUDA R, KATAGIRI M, MATSUBAYASHI M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2012, 680:139-144. |
[106] |
TRTIK P, HOVIND J, GRUNZWEIG C, et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institute- the neutron microscope project. Physics Procedia , 2015, 69:169-176.
DOI URL |
[107] | TRTIK P, LEHMANN E H. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2015, 788:67-70. |
[108] | ROSSNER W, GRABMAIER B C. Phosphors for X-ray detectors in computed tomography. Journal of Luminescence , 1991, 48:29-36. |
[109] |
ISHII M, KOBAYASHI M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials , 1992, 23:245-311.
DOI URL |
[110] | LECOQ P. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2016, 809:130-139. |
[111] | BUZUG T M. Computed tomography: from photon statistics to modern cone-beam CT. Springer Science & Business Media , 2009, 36:3858. |
[112] | CHEN J Y, SHI Y, FENG T, et al. Scintillation ceramics and their application on medical X-CT. Journal of the Chinese Ceramic Society , 2004, 32(7):868-872. |
[113] |
WU Y T, REN G H, NIKL M, et al. CsI: Ti+, Yb2+: ultra-high light yield scintillator with reduced afterglow. CrystEngComm , 2014, 16(16):3312-3317.
DOI URL |
[114] | JIANG H C, VARTULI J, VESS C. Gemstone-the Ultimate Scintillator for Computed Tomography. GE White Paper CT-0376-1108-EN-US, 2008:1-8. |
[115] |
NAKAMURA R. Improvements in the X-ray characteristics of Gd2O2S:Pr ceramic scintillators. Journal of the American Ceramic Society , 1999, 82(9):2407-2410.
DOI URL |
[116] | https://www.toshiba-tmat.co.jp/en/product/sc_cera.htm. [2020-09-17] |
[117] | https://www.siemens-healthineers.com/computed-tomography/technologies-innovations/ufc-ultra-fast-ceramic. [2020-09-17] |
[118] | http://www.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2013-AAPM_Altman-CTdetectors.pdf. [2020-09-17] |
[119] | http://www.hitachi-metals.co.jp/e/products/elec/md/p05_14.html. |
[120] | http://www.irayam.com/pdf/4200007A0_Datasheet%20GOS%20Ceramic-CN.pdf. [2020-09-17] |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||