Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 561-569.DOI: 10.15541/jim20200347
• REVIEW • Next Articles
SU Li(), YANG Jianping(
), LAN Yue, WANG Lianjun, JIANG Wan
Received:
2020-06-24
Revised:
2020-07-24
Published:
2021-06-20
Online:
2020-09-09
Contact:
YANG Jianping, professor. E-mail: jianpingyang@dhu.edu.cn
About author:
SU Li(1988-), female, PhD candidate. E-mail: 1169143@mail.dhu.edu.cn
Supported by:
CLC Number:
SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation[J]. Journal of Inorganic Materials, 2021, 36(6): 561-569.
[1] |
LOWRY G V, JOHNSON K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004,38(19):5208-5216.
DOI URL |
[2] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997,31(7):2154-2156.
DOI URL |
[3] |
LI X Q, ZHANG W X. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 2006,22(10):4638-4642.
DOI URL |
[4] |
TENG W, BAI N, ZHANG W X, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environmental Science & Technology, 2018,52(1):230-236.
DOI URL |
[5] |
PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 2000,34(12):2564-2569.
DOI URL |
[6] |
FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 2014,267:194-205.
DOI URL |
[7] |
PHENRAT T, SALEH N, LOWRY G V, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007,41(1):284-290.
DOI URL |
[8] |
YANG Z, QIAN J, PAN B C, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences, 2019,116(14):6659-6664.
DOI URL |
[9] |
QIN H, GUAN X, TRATNYEK P G. Effects of sulfidation and nitrate on the reduction of N-Nitrosodimethylamine by zerovalent iron. Environmental Science & Technology, 2019,53(16):9744-9754.
DOI URL |
[10] |
TOSCO T, CRUZ V C, SETHI R, et al. Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 2014,77:10-21.
DOI URL |
[11] |
HUA Y, WANG W, ZHANG W X, et al. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. Chemosphere, 2018,201:603-611.
DOI URL |
[12] |
GRIEGER K D, BJERG P L, BAUN A, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Journal of Contaminant Hydrology, 2010,118(3):165-183.
DOI URL |
[13] |
ZHU F, LI L, LIU T, et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ)in the soil leachate by nZVI/Ni bimetal material. Environmental Pollution, 2017,227:444-450.
DOI URL |
[14] |
HUANG W, LI W X. Surface and interface design for heterogeneous catalysis. Physical Chemistry Chemical Physics, 2019,21(2):523-536.
DOI URL |
[15] | CHU K, WANG F, ZHANG H, et al. Interface design of graphene/ copper composites by matrix alloying with titanium. Materials & Design, 2018,144:290-303. |
[16] |
CHEN P C, LIU M, MIRKIN C A, et al. Interface and heterostructure design in polyelemental nanoparticles. Science, 2019,363(6430):959.
DOI URL |
[17] |
YANG Z, LIU J, WANG F, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites. Composites Science and Technology, 2016,132:68-75.
DOI URL |
[18] |
CHANG W S, LIU H J, CHU Y H, et al. Tuning electronic transport in a self-assembled nanocomposite. ACS Nano, 2014,8(6):6242-6249.
DOI URL |
[19] |
ESPINO P E, BRAS J, DOMENEK S, et al. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydrate Polymers, 2018,183:267-277.
DOI URL |
[20] |
PENG J, CHENG Q. High-performance nanocomposites inspired by nature. Advanced Materials, 2017,29(45):1702959.
DOI URL |
[21] |
HUANG J, TANG Z, GUO B, et al. Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal- ligand bonds. Macromolecular Rapid Communications, 2016,37(13):1040-1045.
DOI URL |
[22] |
SANCHEZ C, RIBOT F, LEBEAU B. Molecular design of hybrid organic-inorganic nanocomposites synthesized via Sol-Gel chemistry. Journal of Materials Chemistry, 1999,9(1):35-44.
DOI URL |
[23] |
ZHANG Y, GONG S, CHENG Q, et al. Graphene-based artificial nacre nanocomposites. Chemical Society Reviews, 2016,45(9):2378-2395.
DOI URL |
[24] |
NALDONI A, PSARO R, DAL S V, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 2012,134(18):7600-7603.
DOI URL |
[25] |
TANG J, LIU J, IMURA M, et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. Journal of the American Chemical Society, 2015,137(4):1572-1580.
DOI URL |
[26] |
XU Z C, HOU Y L, SUN S H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 2007,129(28):8698-8699.
DOI URL |
[27] |
TSENG H H, SU J G, LIANG C. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/ dechlorination of trichloroethylene. Journal of Hazardous Materials, 2011,192(2):500-506.
DOI URL |
[28] |
LI Z, WANG L, MENG J, et al. Zeolite-supported nanoscale zero- valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 2018,344:1-11.
DOI URL |
[29] |
LUO W, WANG Y, YANG J P, et al. Silicon/mesoporous carbon/ crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano, 2016,10(11):10524-10532.
DOI URL |
[30] |
LU W, LI J, CHEN L, et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution. Journal of Colloid and Interface Science, 2017,505:1134-1146.
DOI URL |
[31] |
YANG J P, ZHANG F, ZHAO D Y, et al. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 2014,50(6):713-715.
DOI URL |
[32] |
YANG J P, DOU S X, ZHAO D Y, et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015,8(8):2503-2514.
DOI URL |
[33] |
YANG J P, ZHANG F, ZHAO D Y, et al. Mesoporous silica- coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Advanced Healthcare Materials, 2014,3(10):1620-1628.
DOI URL |
[34] |
ZHAO D Y, HUO Q, STUCKY G D, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998,120(24):6024-6036.
DOI URL |
[35] |
BECK J S, VARTULI J C, SCHLENKER J L, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992,114(27):10834-10843.
DOI URL |
[36] |
INAGAKI S, GUAN S, TERASAKI O, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999,121(41):9611-9614.
DOI URL |
[37] |
LI W, ZHANG F, ZHAO D Y, et al. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. Journal of the American Chemical Society, 2012,134(29):11864-11867.
DOI URL |
[38] |
KAMATA K, LU Y, XIA Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society, 2003,125(9):2384-2385.
DOI URL |
[39] |
LI W, DENG Y H, ZHAO D Y, et al. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. Journal of the American Chemical Society, 2011,133(40):15830-15833.
DOI URL |
[40] |
YUE Q, LI J, SU J, et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. Journal of the American Chemical Society, 2017,139(43):15486-15493.
DOI URL |
[41] |
SUN H, SHEN X, CHEN H, et al. Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures. Journal of the American Chemical Society, 2012,134(27):11243-11250.
DOI URL |
[42] |
ANTOLINI E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009,88(1):1-24.
DOI URL |
[43] |
BANG J H, HAN K, SUSLICK K S, et al. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. The Journal of Physical Chemistry C, 2007,111(29):10959-10964.
DOI URL |
[44] |
SKRABALAK S E, SUSLICK K S. Porous carbon powders prepared by ultrasonic spray pyrolysis. Journal of the American Chemical Society, 2006,128(39):12642-12643.
DOI URL |
[45] | XU H W, ZHANG W X, YANG J P, et al. Bimetallic PdCu nanocrystals immobilized by nitrogen-containing ordered mesoporous carbon for electrocatalytic denitrification. ACS Applied Materials & Interfaces, 2019,11(4):3861-3868. |
[46] |
TENG W, BAI N, ZHANG W X, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ. Sci. Technol., 2018,52(1):230-236.
DOI URL |
[47] |
WANG Q Q, ZHANG W Z, YANG J P, et al. Porous-carbon- confined formation of monodisperse iron nanoparticle yolks toward versatile nanoreactors for metal extraction. Chemistry-A European Journal 2018, 24(58):15663-15668.
DOI URL |
[48] |
SU L, JIAN W, YANG J P, et al. Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 2020,56(18):2795-2798.
DOI URL |
[49] |
SU L, JIAN W, YANG J P, et al. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Letters, 2019,19(8):5423-5430.
DOI URL |
[50] |
HU Y, PENG X, ZHANG L, et al. Liquid nitrogen activation of zero-valent iron and its enhanced Cr(VI) removal performance. Environmental Science & Technology, 2019,53(14):8333-8341.
DOI URL |
[51] |
WANG C, BAER D R, QIANG Y, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 2009,131(25):8824-8832.
DOI URL |
[52] | LING L, ZHANG W X. Reactions of nanoscale zero-valent iron with Ni(II): three-dimensional tomography of the “Hollow out” effect in a single nanoparticle. Environmental Science & Technology Letters, 2014,1(3):209-213. |
[53] | WU D, PENG S, ZHANG Y, et al. Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution. ACS Sustainable Chemistry & Engineering, 2018,6(3):3039-3048. |
[54] |
MEFFRE A, RESPAUD M, CHAUDRET B, et al. Use of long chain amine as a reducing agent for the synthesis of high quality monodisperse iron(0) nanoparticles. Journal of Materials Chemistry, 2011,21(35):13464-13469.
DOI URL |
[55] |
EGEBERG A, BLOCK T, FELDMANN C. Lithiumpyridinyl- driven synthesis of high-purity zero-valent iron nanoparticles and their use in follow-up reactions. Small, 2019,15(37):1902321.
DOI URL |
[56] |
LUO W, LIU H K, YANG J P, et al. Germanium nanograin decoration on carbon shell: boosting lithium-storage properties of silicon nanoparticles. Advanced Functional Materials, 2016,26(43):7800-7806.
DOI URL |
[57] |
SUN Z, YANG J P, ZHAO D Y, et al. A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core-shell nanostructures. Journal of Materials Chemistry A, 2014,2(17):6071-6074.
DOI URL |
[58] |
WANG Q Q, JIANG W, YANG J P, et al. Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. Chemical Communications, 2018,54(46):5887-5890.
DOI URL |
[59] |
JIAO J, WANG H, CAO L, et al. In situ confined growth based on a self-templating reduction strategy of highly dispersed Ni nanoparticles in hierarchical yolk-shell Fe@SiO2 structures as efficient catalysts. Chemistry-An Asian Journal, 2016,11(24):3534-3540.
DOI URL |
[60] |
LAN Y, CHEN J L, YANG J P, et al. Fe/Fe3C nanoparticle- decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. Journal of Materials Chemistry A, 2020,8(31):15853-15863.
DOI URL |
[61] |
LIANG H W, WEI W, FENG X, et al. Mesoporous metal-nitrogen- doped carbon electrocatalysts for highly efficient oxygen reduction reaction. Journal of the American Chemical Society, 2013,135(43):16002-16005.
DOI URL |
[62] |
XIAO M, ZHU J, XING W, et al. Meso/macroporous nitrogen- doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Advanced Materials, 2015,27(15):2521-2527.
DOI URL |
[63] |
WU Z Y, XU X X, YU S H, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angewandte Chemie-International Edition, 2015,54(28):8179-8183.
DOI URL |
[64] |
LI Z, LI G, LI F, et al. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angewandte Chemie-International Edition, 2015,54(5):1494-1498.
DOI URL |
[65] |
TENG W, FAN J W, ZHANG W X, et al. Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017,5(9):4478-4485.
DOI URL |
[66] |
LI J, CHEN C, WANG X, et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 2016,59:389-394.
DOI URL |
[67] |
WANG C, LUO H, CHEN S, et al. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 2014,268:124-131.
DOI URL |
[68] |
KANEL S R, MANNING B, CHOI H, et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 2005,39(5):1291-1298.
DOI URL |
[69] |
TANG C, LING L, ZHANG W X. Pb(II) deposition-reduction- growth onto iron nanoparticles induced by graphitic carbon nitride. Chemical Engineering Journal, 2020,387:124088.
DOI URL |
[70] |
CHEN M, WANG H, YANG J P, et al. Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen- doped carbon coralline. Nanoscale, 2018,10(40):19023-19030.
DOI URL |
[71] |
DUAN W, LI G, FENG C, et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research, 2019,161:126-135.
DOI URL |
[72] |
WANG J, LING L, ZHANG W X, et al. Nitrogen-doped iron for selective catalytic reduction of nitrate to dinitrogen. Science Bulletin, 2020,65(11):926-933.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||