Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (1): 49-59.DOI: 10.15541/jim20180243
Special Issue: MAX相和MXene材料; 光伏材料
• REVIEW • Previous Articles Next Articles
WANG Xiao, WANG Ran-Ran, SHI Liang-Jing, SUN Jing
Received:
2018-05-25
Revised:
2018-07-24
Published:
2019-01-21
Online:
2018-12-17
About author:
WANG Xiao. E-mail: wangxiao@mail.sic.ac.cn
CLC Number:
WANG Xiao, WANG Ran-Ran, SHI Liang-Jing, SUN Jing. Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes[J]. Journal of Inorganic Materials, 2019, 34(1): 49-59.
Solvent | Reducing agent | Capping agent | Cu precursor | Average diameter/nm | Average length | Ref. |
---|---|---|---|---|---|---|
DI water | H3PO3 | Sodium dodecyl benzene sulfonate (SDBS) | CuSO4·5H2O, | ~85 | Tens of micrometers | [17] |
DI water | Hydrazine hydrate | Ethylenediamine | Cu(NO3)2 | 35-70 | 20-80 μm | [11-13, 18] |
DI water | Ascorbic Acid | PVP | Cu(NO3)2 | ~50 | >10 μm | [19] |
DI water | Glucose | HDA | CuCl2·2H2O | 24±4 | Tens to hundreds micrometers | [20] |
DI water | Glucose | Oleic acid, Oleylamine | CuCl2 | ~45 | 60-90 μm | [9] |
1-hexadecylamine (HDA) | 1-Hexadecylamine (HDA) | Hexadecyl trimethyl ammonium bromide (CTAB) | Cu(acac)2 | ~78 | Tens to hundreds micrometers | [14] |
Oleylamine | Oleylamine | Oleylamine | CuCl | ~63 | 10-30 μm | [10] |
Oleylamine | Oleylamine | Oleylamine | CuBr2/CuCl2 | 16.2-90.0 | 20-40 μm | [15-16] |
Oleylamine | Tris(trimethylsilyl) silane | Oleylamine | CuCl2 | ~16.1 | ~17 μm | [21] |
Table 1 Summary of representitive synthetic methods of Cu nanowires
Solvent | Reducing agent | Capping agent | Cu precursor | Average diameter/nm | Average length | Ref. |
---|---|---|---|---|---|---|
DI water | H3PO3 | Sodium dodecyl benzene sulfonate (SDBS) | CuSO4·5H2O, | ~85 | Tens of micrometers | [17] |
DI water | Hydrazine hydrate | Ethylenediamine | Cu(NO3)2 | 35-70 | 20-80 μm | [11-13, 18] |
DI water | Ascorbic Acid | PVP | Cu(NO3)2 | ~50 | >10 μm | [19] |
DI water | Glucose | HDA | CuCl2·2H2O | 24±4 | Tens to hundreds micrometers | [20] |
DI water | Glucose | Oleic acid, Oleylamine | CuCl2 | ~45 | 60-90 μm | [9] |
1-hexadecylamine (HDA) | 1-Hexadecylamine (HDA) | Hexadecyl trimethyl ammonium bromide (CTAB) | Cu(acac)2 | ~78 | Tens to hundreds micrometers | [14] |
Oleylamine | Oleylamine | Oleylamine | CuCl | ~63 | 10-30 μm | [10] |
Oleylamine | Oleylamine | Oleylamine | CuBr2/CuCl2 | 16.2-90.0 | 20-40 μm | [15-16] |
Oleylamine | Tris(trimethylsilyl) silane | Oleylamine | CuCl2 | ~16.1 | ~17 μm | [21] |
Fig. 2 SEM images and diameter distribution of Cu nanowires synthesized by using different halide ions[16] (a, e) 2.6 mmol Cl-; (b,f) 2.0 mmol Cl-; (c,g) 1.6 mmol Cl-; (d,h) 1.6 mmol Br-
Fig. 3 (A) SEM image of Cu-Ni NWs with inset showing high resolution SEM image of Cu-Ni NWs; (B) Dark field optical microscopy images of Cu-Ni NWs; (C-H) The distribution of Cu and Ni elements of Cu-Ni NWs with different contents of nickel[23]
Fig. 4 Schematic diagram of the vaccum transfer method (a)[35], the spray-coating method (b)[36], the meyer rod coating method (c)[37], and the roll-to-roll coating method (d)[37]
Fig. 5 (a-c) Schematic diagram of the experimental setup of a typical plasma treatment process; (d) SEM image of the nanowire junction after plasma treatment; (e) Current-voltage measurement of LED lamps connected by stretchable Cu NW conductors at various strains. Insets are digital photos of the whole setup at 0 and 250% strain[48]
Fig. 6 Schematic diagram (a) of the preparation procedure of Cu NWs/PA electrode. SEM (b), TEM (c), HRTEM (d) and EELS spetra (e) of the Cu NWs film after TiO2 nanopartical sol treatment. Raman spectra (f) of Cu NWs before post-treating, after H2 plasma treatment and TiO2 nanopartical sol treatment. Plot of the transmittance (at a wavelength of 550 nm) with respect to the sheet resistance (g) for films of Cu NWs with H2 annealing, H2 plasma treatment and TiO2 nanopartical sol treatment. Sheet resistance variation (h) of the commercial ITO/PET and Cu NWs/PA electrodes during the bending test of 104 cycles[53]
Fig. 7 (a) Time-dependent temperature curves of Cu NW-1000 on PET films at input voltages of 1.5-5 V under ambient conditions; (b) PET/ITO transparent heaters during 104 cycles of bending tests; (c) Infrared photograph and (d) application examples of Cu NW-based stretchable heater[61]
[1] | CHENG H Y, LUO J, HUANG L Q, et al.Preparation of flexible dye-sensitized solar cells based on hierarchical structure ZnO nanosheets. Journal of Inorganic Materials, 2018, 33(5): 507-514. |
[2] | ZHANG J, YANG X, DENG H, et al. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36-1-26. |
[3] | GUERRERO A, GARCIA-BELMONTE G. Recent advances to understand morphology stability of organic photovoltaics. Nano- Micro Letters, 2016, 9(1): 10-1-16. |
[4] | CHEN D, LÜ J G, HUANG J Y, et al.Performances of GaN-based LEDs with AZO films as transparent electrodes. Journal of Inorganic Materials, 2013, 28(6): 649-652. |
[5] | HAN S S, LIU L Y, SHAN Y K, et al.Research of graphene/ antireflection nanostructure composite transparent conducting films. Journal of Inorganic Materials, 2017, 32(2): 197-202. |
[6] | HUANG W, ZHU J Y, LI H, et al.Preparation and characterization of graphene/carbon nanotube hybrid thin films by drop-coating. Journal of Inorganic Materials, 2017, 32(2): 203-209. |
[7] | LEE J, LEE P, LEE H, et al.Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012, 4(20): 6408-6414. |
[8] | HU L B, WU H, CUI Y.Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36(10): 760-765. |
[9] | LI S, CHEN Y, HUANG L, et al.Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorganic Chemistry, 2014, 53(9): 4440-4444. |
[10] | YANG H J, HE S Y, TUAN H Y.Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications. Langmuir, 2014, 30(2): 602-610. |
[11] | CHANG Y, LYE M L, ZENG H C.Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir, 2005, 21(9): 3746-3748. |
[12] | YE S, RATHMELL A R, HA Y C, et al.The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires. Small, 2014, 10(9): 1771-1778. |
[13] | RATHMELL A R, WILEY B J.The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials, 2011, 23(41): 4798-4803. |
[14] | ZHANG D, WANG R, WEN M, et al.Synthesis of ultralong copper nanowires for high-performance transparent electrodes. Journal of the American Chemical Society, 2012, 134(35): 14283-14286. |
[15] | GUO H, LIN N, CHEN Y, et al. Copper nanowires as fully transparent conductive electrodes. Scientific Reports, 2013, 3: 2323-1-8. |
[16] | WANG X, WANG R, SHI L, et al.Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes. Journal of Materials Chemistry C, 2018, 6(5): 1048-1056. |
[17] | LIU Z, YANG Y, LIANG J, et al.Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. The Journal of Physical Chemistry B, 2003, 107(46): 12658-12661. |
[18] | YE S, RATHMELL A R, STEWART I E, et al.A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chemical Communications, 2014, 50(20): 2562-2564. |
[19] | ZHANG X, ZHANG D, NI X, et al.One-step preparation of copper nanorods with rectangular cross sections. Solid State Communications, 2006, 139(8): 412-414. |
[20] | JIN M, HE G, ZHANG H, et al.Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angewandte Chemie, 2011, 50(45): 10560-10564. |
[21] | CUI F, YU Y, DOU L, et al.Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Letters, 2015, 15(11): 7610-7615. |
[22] | RATHMELL A R, NGUYEN M, CHI M, et al.Synthesis of oxidation- resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Letters, 2012, 12(6): 3193-3199. |
[23] | WANG X, WANG R, SHI L, et al.Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small, 2015, 11(36): 4737-4744. |
[24] | SOREL S, LYONS P E, DE S, et al. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter. Nanotechnology, 2012, 23(18): 185201-1-10. |
[25] | LAGRANGE M, LANGLEY D P, GIUSTI G, et al.Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale, 2015, 7(41): 17410-17423. |
[26] | KIM A, WON Y, WOO K, et al.All-solution-processed indium- free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells. Advanced Functional Materials, 2014, 24(17): 2462-2471. |
[27] | FINN D J, LOTYA M, COLEMAN J N.Inkjet printing of silver nanowire networks. ACS Applied Materials & Interfaces, 2015, 7(17): 9254-9261. |
[28] | LU H, LIN J, WU N, et al. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Applied Physics Letters, 2015, 106(9): 093302-1-4. |
[29] | BELLEW A T, BELL A P, MCCARTHY E K, et al.Programmability of nanowire networks. Nanoscale, 2014, 6(16): 9632-9639. |
[30] | SCARDACI V, COULL R, LYONS P E, et al.Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small, 2011, 7(18): 2621-2628. |
[31] | HAUGER T C, AL-RAFIA S M, BURIAK J M. Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity. ACS Applied Materials & Interfaces, 2013, 5(23): 12663-12671. |
[32] | BORCHERT J W, STEWART I E, YE S, et al.Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors. Nanoscale, 2015, 7(34): 14496-14504. |
[33] | KOGA H, NOGI M, KOMODA N, et al. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. npg Asia Mater., 2014, 6(3): e93-1-8. |
[34] | DENG B, HSU P C, CHEN G, et al.Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Letters, 2015, 15(6): 4206-4213. |
[35] | WON Y, KIM A, YANG W, et al.A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. npg Asia Mater., 2014, 6(9): e132-e132. |
[36] | DING S, JIU J, GAO Y, et al.One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Applied Materials & Interfaces, 2016, 8(9): 6190-6199. |
[37] | YE S, RATHMELL A R, CHEN Z, et al.Metal nanowire networks: the next generation of transparent conductors. Advanced Materials, 2014, 26(39): 6670-6687. |
[38] | WON Y, KIM A, LEE D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. npg Asia Materials, 2014, 6: e105-1-9. |
[39] | TAO A, KIM F, HESS C, et al.Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters, 2003, 3(9): 1229-1233. |
[40] | LIU J W, WANG J L, WANG Z H, et al.Manipulating nanowire assembly for flexible transparent electrodes. Angewandte Chemie, 2014, 53(49): 13477-13482. |
[41] | KANG S, KIM T, CHO S, et al.Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Letters, 2015, 15(12): 7933-7942. |
[42] | JASON N N, SHEN W, CHENG W.Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Applied Materials & Interfaces, 2015, 7(30): 16760-16766. |
[43] | GARNETT E C, CAI W, CHA J J, et al.Self-limited plasmonic welding of silver nanowire junctions. Nature Materials, 2012, 11(3): 241-249. |
[44] | BELL A P, FAIRFIELD J A, MCCARTHY E K, et al.Quantitative study of the photothermal properties of metallic nanowire networks. ACS Nano, 2015, 9(5): 5551-5558. |
[45] | HAN S, HONG S, HAM J, et al.Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Advanced Materials, 2014, 26(33): 5808-5814. |
[46] | SONG T B, CHEN Y, CHUNG C H, et al.Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano, 2014, 8(3): 2804-2811. |
[47] | MAIZE K, DAS S R, SADEQUE S, et al. Super-Joule heating in graphene and silver nanowire network. Applied Physics Letters, 2015, 106(14): 143104-1-6. |
[48] | WANG R, ZHAI H, WANG T, et al.Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Research, 2016, 9(7): 2138-2148. |
[49] | LU H, ZHANG D, REN X, et al.Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode. ACS Nano, 2014, 8(10): 10980-10987. |
[50] | LU H F, ZHANG D, CHENG J Q, et al.Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Advanced Functional Materials, 2015, 25(27): 4211-4218. |
[51] | XIONG W, LIU H, CHEN Y, et al.Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Advanced Materials, 2016, 28(33): 7167-7172. |
[52] | WANG X, WANG R, ZHAI H, et al.Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Applied Materials & Interfaces, 2016, 8(42): 28831-28837. |
[53] | ZHAI H, LI Y, CHEN L, et al.Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Research, 2018, 11(4): 1895-1904. |
[54] | ZHAI H, LI Y, CHEN L, et al.Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Research, 2018, 11(4): 1956-1966. |
[55] | ZHAI H, WANG R, WANG W, et al.Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Research, 2015, 8(10): 3205-3215. |
[56] | HSU P C, LIU X, LIU C, et al.Personal thermal management by metallic nanowire-coated textile. Nano Letters, 2015, 15(1): 365-371. |
[57] | GUPTA R, RAO K D, KIRUTHIKA S, et al.Visibly transparent heaters. ACS Applied Materials & Interfaces, 2016, 8(20): 12559-12575. |
[58] | KANG J, KIM H, KIM K S, et al.High-performance graphene- based transparent flexible heaters. Nano Letters, 2011, 11(12): 5154-5158. |
[59] | JANAS D, KOZIOL K K.A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale, 2014, 6(6): 3037-3045. |
[60] | CELLE C, MAYOUSSE C, MOREAU E, et al.Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, 2012, 5(6): 427-433. |
[61] | ZHAI H, WANG R, WANG X, et al.Transparent heaters based on highly stable Cu nanowire films. Nano Research, 2016, 9(12): 3924-3936. |
[62] | IM H G, JUNG S H, JIN J, et al.Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano, 2014, 8(10): 10973-10979. |
[63] | CHENG Y, WANG S, WANG R, et al.Copper nanowire based transparent conductive films with high stability and superior stretchability. Journal of Materials Chemistry C, 2014, 2(27): 5309-5316. |
[64] | WANG T, WANG R, CHENG Y, et al.Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications. ACS Applied Materials & Interfaces, 2016, 8(14): 9297-9304. |
[65] | CHEN Z, RATHMELL A R, YE S, et al.Optically transparent water oxidation catalysts based on copper nanowires. Angewandte Chemie International Edition, 2013, 52(51): 13708-13711. |
[66] | XIAO S, LIU P, ZHU W, et al.Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation. Nano Letters, 2015, 15(8): 4853-4858. |
[67] | PARK S G, MUN C, LEE M, et al.3D hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors. Advanced Materials, 2015, 27(29): 4290-4295. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||